The Hausdorff Dimensions of Geometrical Fractals

博士 === 淡江大學 === 數學學系 === 85 === \par The present study comprises two major parts. The condition that the simple curve constructed based on a symmetric Cantor set is a fractal is discussed inthe first part. Let $a$ be the ratio (${{\rm the~...

Full description

Bibliographic Details
Main Authors: LIANG, JYH-CHING, 梁志慶
Other Authors: TSENG SHIOJENN
Format: Others
Language:zh-TW
Published: 1997
Online Access:http://ndltd.ncl.edu.tw/handle/15854281806928742326
id ndltd-TW-085TKU00479002
record_format oai_dc
spelling ndltd-TW-085TKU004790022016-07-01T04:15:57Z http://ndltd.ncl.edu.tw/handle/15854281806928742326 The Hausdorff Dimensions of Geometrical Fractals 碎形幾何的豪斯多夫維度 LIANG, JYH-CHING 梁志慶 博士 淡江大學 數學學系 85 \par The present study comprises two major parts. The condition that the simple curve constructed based on a symmetric Cantor set is a fractal is discussed inthe first part. Let $a$ be the ratio (${{\rm the~ residual~ length}\over {\rm the~ original~ length}}$) in each step of the construction. We show that if $a > 1/4$, then the simple curve obtained is a fractal;otherwise, it is not. The Hausdorff dimension of the fractal thus obtained canbe evaluated. The Hausdorff dimension of the set of continued fractions is estimated in the second part of this study. A simple, yet efficient, algorithmwhich is similar to the procedure adopted in the construction of a Cantor set is proposed for the estimation of the lower bound of the Hausdorff dimension ofcontinued fractions. For the set $\{\xi~ :~ a_n\ge a^{b^n}~{\rm for~all}~ n\},$ the present algorithm provides the greatest lower bound.{\bf Theorem} {\it If $a_1 > {1/4},$ then $C$ is a fractal; otherwiseit is not a fractal}.\par Let $r$ be a positive integer. Let us define two sets of integers depending on $r$ by$$\eqalign {A_n =& \{ r+n+2k-1~~\vert~ k~{\rm is~ an~ interger~ and~} 0\le k\le n-1\}\cr {\rm and}~~~~~~~~~&\crB_n =& \{ r+n+2k~~\vert~ k~{\rm is~ an~ integer~ and ~} 0\le k\le n-2 \},~~\forall n>1.\cr}$$Also, $A_1=\{r\}$ and $B_1=\phi.$ Let $\vert\cdot\vert$ denote the cardinalnumber; thus $\vert A_n\vert=n$ and $\vert B_n\vert =n-1.$\vskip .5cm\par {\bf Theorem } {\itLet $T = \{\xi : a_n\in A_n~ {\rm for~ all}~ n\}$. Then } $\dim T = 1/2.$\bigskip \vskip .5cm\par {\bf Definition } Let us define two sets $A_n = \{ n^b, (n+2)^b, \cdots,(3n-2) ^b\}$ and$B_n = \{ x : n^b < x < (3n-2)^b\ {\rm and}\ x\not\in A_n\},$ $\forall n\ge 1$.\vskip .5 cm\par{\bf Theorem } {\it Let $D = \{\xi : a_i\in (n^b)\ {\rm and}\ a_i\ge i^b\ {\rm for~ all}\ i\}$.Then} $$\dim D \ge {1\over 2b}.$$\bigskip \vskip .5cm\par Let us define two sets $A_n = \{ [a^{b^n}]+n+1, [a^{b^n}]+n+3, \cdots, 3[a^{b^n}]+n+1\}$ and$B_n = \{ [a^{b^n}]+ n+2, [a^{b^n}]+n+4, \cdots,3[a^{b^n}]+n \}$ for all $n\ge 1$,where [$x$] denote the largest integer $m$ with $m\le x$.The numbers of sets $A_n$ and $B_n$ are $[a^{b^n}]+1$ and $[a^{b^n}],$ respectively,for all $n\ge 1$. \vskip .5 cm\par{\bf Theorem } {\it Fix $a, b>1$.Let $S = \{\xi : a_n\ge a^{b^n} for\ all\ n\}$.Then we have} $$\hbox{dim}S \ge {1\over {b+1}}.$$ TSENG SHIOJENN 曾琇瑱 1997 學位論文 ; thesis 27 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 博士 === 淡江大學 === 數學學系 === 85 === \par The present study comprises two major parts. The condition that the simple curve constructed based on a symmetric Cantor set is a fractal is discussed inthe first part. Let $a$ be the ratio (${{\rm the~ residual~ length}\over {\rm the~ original~ length}}$) in each step of the construction. We show that if $a > 1/4$, then the simple curve obtained is a fractal;otherwise, it is not. The Hausdorff dimension of the fractal thus obtained canbe evaluated. The Hausdorff dimension of the set of continued fractions is estimated in the second part of this study. A simple, yet efficient, algorithmwhich is similar to the procedure adopted in the construction of a Cantor set is proposed for the estimation of the lower bound of the Hausdorff dimension ofcontinued fractions. For the set $\{\xi~ :~ a_n\ge a^{b^n}~{\rm for~all}~ n\},$ the present algorithm provides the greatest lower bound.{\bf Theorem} {\it If $a_1 > {1/4},$ then $C$ is a fractal; otherwiseit is not a fractal}.\par Let $r$ be a positive integer. Let us define two sets of integers depending on $r$ by$$\eqalign {A_n =& \{ r+n+2k-1~~\vert~ k~{\rm is~ an~ interger~ and~} 0\le k\le n-1\}\cr {\rm and}~~~~~~~~~&\crB_n =& \{ r+n+2k~~\vert~ k~{\rm is~ an~ integer~ and ~} 0\le k\le n-2 \},~~\forall n>1.\cr}$$Also, $A_1=\{r\}$ and $B_1=\phi.$ Let $\vert\cdot\vert$ denote the cardinalnumber; thus $\vert A_n\vert=n$ and $\vert B_n\vert =n-1.$\vskip .5cm\par {\bf Theorem } {\itLet $T = \{\xi : a_n\in A_n~ {\rm for~ all}~ n\}$. Then } $\dim T = 1/2.$\bigskip \vskip .5cm\par {\bf Definition } Let us define two sets $A_n = \{ n^b, (n+2)^b, \cdots,(3n-2) ^b\}$ and$B_n = \{ x : n^b < x < (3n-2)^b\ {\rm and}\ x\not\in A_n\},$ $\forall n\ge 1$.\vskip .5 cm\par{\bf Theorem } {\it Let $D = \{\xi : a_i\in (n^b)\ {\rm and}\ a_i\ge i^b\ {\rm for~ all}\ i\}$.Then} $$\dim D \ge {1\over 2b}.$$\bigskip \vskip .5cm\par Let us define two sets $A_n = \{ [a^{b^n}]+n+1, [a^{b^n}]+n+3, \cdots, 3[a^{b^n}]+n+1\}$ and$B_n = \{ [a^{b^n}]+ n+2, [a^{b^n}]+n+4, \cdots,3[a^{b^n}]+n \}$ for all $n\ge 1$,where [$x$] denote the largest integer $m$ with $m\le x$.The numbers of sets $A_n$ and $B_n$ are $[a^{b^n}]+1$ and $[a^{b^n}],$ respectively,for all $n\ge 1$. \vskip .5 cm\par{\bf Theorem } {\it Fix $a, b>1$.Let $S = \{\xi : a_n\ge a^{b^n} for\ all\ n\}$.Then we have} $$\hbox{dim}S \ge {1\over {b+1}}.$$
author2 TSENG SHIOJENN
author_facet TSENG SHIOJENN
LIANG, JYH-CHING
梁志慶
author LIANG, JYH-CHING
梁志慶
spellingShingle LIANG, JYH-CHING
梁志慶
The Hausdorff Dimensions of Geometrical Fractals
author_sort LIANG, JYH-CHING
title The Hausdorff Dimensions of Geometrical Fractals
title_short The Hausdorff Dimensions of Geometrical Fractals
title_full The Hausdorff Dimensions of Geometrical Fractals
title_fullStr The Hausdorff Dimensions of Geometrical Fractals
title_full_unstemmed The Hausdorff Dimensions of Geometrical Fractals
title_sort hausdorff dimensions of geometrical fractals
publishDate 1997
url http://ndltd.ncl.edu.tw/handle/15854281806928742326
work_keys_str_mv AT liangjyhching thehausdorffdimensionsofgeometricalfractals
AT liángzhìqìng thehausdorffdimensionsofgeometricalfractals
AT liangjyhching suìxíngjǐhédeháosīduōfūwéidù
AT liángzhìqìng suìxíngjǐhédeháosīduōfūwéidù
AT liangjyhching hausdorffdimensionsofgeometricalfractals
AT liángzhìqìng hausdorffdimensionsofgeometricalfractals
_version_ 1718330479752511488