大黃葛根黃芩之定量分析研究

碩士 === 國立臺灣師範大學 === 化學研究所 === 89 === High-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) are currently the most widely used analysis methods for assaying Chinese herb drugs. By combining the advantages of both methods, we can expand the scope of chemical evaluation for C...

Full description

Bibliographic Details
Main Author: 吳權益
Other Authors: Sheu Shuenn-Jyi
Format: Others
Language:zh-TW
Published: 2001
Online Access:http://ndltd.ncl.edu.tw/handle/81700637209209556482
id ndltd-TW-089NTNU0065009
record_format oai_dc
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺灣師範大學 === 化學研究所 === 89 === High-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) are currently the most widely used analysis methods for assaying Chinese herb drugs. By combining the advantages of both methods, we can expand the scope of chemical evaluation for Chinese herb drugs. This study is divided into three parts. The first part deals with the analysis method for the drug Rhei Rhizoma, which is available as the dried rhizome of a polygonaceaous plant and has been used as a laxative. This study employs HPLC and CE to analyze the drug’s 19 constituents that belong to anthraquinones, dianthraquinones, stilbenes and galloylglucoses. Experiment results show that by using a combination of acetic acid and methanol as the eluent, HPLC can successfully analyze the 19 constituents within 75 minutes, whereas CE cannot accomplish this all at a time. However, with the CZE mode using a buffer of borate and sodium dihydrophosphate in different ratios for different pH values, it is possible to achieve the goal of analyzing 22 constituents at a time. Using the HPLC method developed the herbal formula Hsiao-cheng-chi-tang (Minor Rhubarb Combination) can also be analyzed with a total of 25 constituents including 19 constituents from the formula’s rhubarb ingredient, 2 constituents from the formula’s magnolia ingredient and 4 constituents from the formula’s chih-shih (Aurantii Fructus Immaturus) ingredient. By applying this method to the study on rhubarb’s stability and processing, we have found that heating has great influences on the herb’s constituents and that the higher the temperature of heating the herb is subjected to, the more disadvantageous it will be to the herb’s preservation. Such influences gradually become stabilized seven days after heating. Processing by immersing the herb in wine and then drying it in the shade dose not cause much change in the contents of the constituents, but it is found to have greatly reduced after processing by stir-frying the herb with wine. Processing by steaming the herb with wine commonly reduces the contents of anthraquinones and dianthraquinones, but increases the contents of stilbenes and galloylglucoses. The second part is about the development of the HPLC method for analyzing the herb drug Puerariae Radix, which is available as the dried root of the legume plant Pueraria lobata Ohwi and has been used as an important diaphoretic drug. The drug contains flavones. In this study we used an eluent composed of acetic acid, acetonitrile and methanol whereby we are able to separate 12 constituents within 65 minutes. Commercial articles of this drug are of two kinds: the wild pueraria (derived from P. lobata Ohwi) and the powdery pueraria (derived from P. thomsonii Denth.). The wild pueraria has high contents of constituents. The ratio between 3’-methoxypuruerarin and puerarin differentiates the two articles. For the wild pueraria, the ratio is larger than 0.1, while the powdery pueraria has a ratio smaller than 0.03. Meantime, this analysis method can be used for identification and discrimination between a pueraria simple and a pueraria-containing formula. The third part contains the HPLC method developed for analyzing the herb drug Scutellariae Radix, which is derived from the dried root of the labiate plant (Scutellaria baicalensis Georgi). In traditional Chinese medicine, the drug is claimed to be capable of clearing heat, purging fire and detoxifying toxicosis. This study employs the combination of acetic acid and acetonitrile as an eluent, whereby 6 flavones including baicalin (1, BG), oroxylin.A 7-O-glucuronide (2, OG), wogonin 7-O-glucuronide (3, WG), baicalein (4, B), wogonin (5, W) and oroxylin A (6, O) can be separated within 50 minutes. The method can also be applied to the analysis of the baicalin-containing formulas San-huang-hsieh-hsin-tang (Coptis and Rhubarb Combination) and its changes in the artificial intestinal fluid. The constituents of scutellaria do not undergo changes in artificial gastric fluid, but the glucosides hydrolyze markedly in artificial intestinal fluid. Such hydrolysis phenomenon can be inhibited by rhubarb. Besides, as Coptis and Rhubarb Combination was fed to mice, the mice’s urine output was found to increase markedly three hours later, reaching the maximum in six hours. The contents of the constituents of scutellaria are BG 102.20 μg/ml, OG n.d., WG 57.37 μg/ml, B 5.70 μg/ml, W 1.39μg/ml, and O 1.74μg/ml. Concentrations of the constituents of scutellaria in serum were found to reach the peak values three hours after feeding of the drug to the mice. (BG 1.82 μg/ml, OG n.d., WG 1.26μg/mlμg/ml, B 1.14μg/mlμg/ml, W 0.18μg/ml and O 0.47μg/ml)
author2 Sheu Shuenn-Jyi
author_facet Sheu Shuenn-Jyi
吳權益
author 吳權益
spellingShingle 吳權益
大黃葛根黃芩之定量分析研究
author_sort 吳權益
title 大黃葛根黃芩之定量分析研究
title_short 大黃葛根黃芩之定量分析研究
title_full 大黃葛根黃芩之定量分析研究
title_fullStr 大黃葛根黃芩之定量分析研究
title_full_unstemmed 大黃葛根黃芩之定量分析研究
title_sort 大黃葛根黃芩之定量分析研究
publishDate 2001
url http://ndltd.ncl.edu.tw/handle/81700637209209556482
work_keys_str_mv AT wúquányì dàhuánggégēnhuángqínzhīdìngliàngfēnxīyánjiū
_version_ 1718335261215031296
spelling ndltd-TW-089NTNU00650092016-07-04T04:17:33Z http://ndltd.ncl.edu.tw/handle/81700637209209556482 大黃葛根黃芩之定量分析研究 吳權益 碩士 國立臺灣師範大學 化學研究所 89 High-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) are currently the most widely used analysis methods for assaying Chinese herb drugs. By combining the advantages of both methods, we can expand the scope of chemical evaluation for Chinese herb drugs. This study is divided into three parts. The first part deals with the analysis method for the drug Rhei Rhizoma, which is available as the dried rhizome of a polygonaceaous plant and has been used as a laxative. This study employs HPLC and CE to analyze the drug’s 19 constituents that belong to anthraquinones, dianthraquinones, stilbenes and galloylglucoses. Experiment results show that by using a combination of acetic acid and methanol as the eluent, HPLC can successfully analyze the 19 constituents within 75 minutes, whereas CE cannot accomplish this all at a time. However, with the CZE mode using a buffer of borate and sodium dihydrophosphate in different ratios for different pH values, it is possible to achieve the goal of analyzing 22 constituents at a time. Using the HPLC method developed the herbal formula Hsiao-cheng-chi-tang (Minor Rhubarb Combination) can also be analyzed with a total of 25 constituents including 19 constituents from the formula’s rhubarb ingredient, 2 constituents from the formula’s magnolia ingredient and 4 constituents from the formula’s chih-shih (Aurantii Fructus Immaturus) ingredient. By applying this method to the study on rhubarb’s stability and processing, we have found that heating has great influences on the herb’s constituents and that the higher the temperature of heating the herb is subjected to, the more disadvantageous it will be to the herb’s preservation. Such influences gradually become stabilized seven days after heating. Processing by immersing the herb in wine and then drying it in the shade dose not cause much change in the contents of the constituents, but it is found to have greatly reduced after processing by stir-frying the herb with wine. Processing by steaming the herb with wine commonly reduces the contents of anthraquinones and dianthraquinones, but increases the contents of stilbenes and galloylglucoses. The second part is about the development of the HPLC method for analyzing the herb drug Puerariae Radix, which is available as the dried root of the legume plant Pueraria lobata Ohwi and has been used as an important diaphoretic drug. The drug contains flavones. In this study we used an eluent composed of acetic acid, acetonitrile and methanol whereby we are able to separate 12 constituents within 65 minutes. Commercial articles of this drug are of two kinds: the wild pueraria (derived from P. lobata Ohwi) and the powdery pueraria (derived from P. thomsonii Denth.). The wild pueraria has high contents of constituents. The ratio between 3’-methoxypuruerarin and puerarin differentiates the two articles. For the wild pueraria, the ratio is larger than 0.1, while the powdery pueraria has a ratio smaller than 0.03. Meantime, this analysis method can be used for identification and discrimination between a pueraria simple and a pueraria-containing formula. The third part contains the HPLC method developed for analyzing the herb drug Scutellariae Radix, which is derived from the dried root of the labiate plant (Scutellaria baicalensis Georgi). In traditional Chinese medicine, the drug is claimed to be capable of clearing heat, purging fire and detoxifying toxicosis. This study employs the combination of acetic acid and acetonitrile as an eluent, whereby 6 flavones including baicalin (1, BG), oroxylin.A 7-O-glucuronide (2, OG), wogonin 7-O-glucuronide (3, WG), baicalein (4, B), wogonin (5, W) and oroxylin A (6, O) can be separated within 50 minutes. The method can also be applied to the analysis of the baicalin-containing formulas San-huang-hsieh-hsin-tang (Coptis and Rhubarb Combination) and its changes in the artificial intestinal fluid. The constituents of scutellaria do not undergo changes in artificial gastric fluid, but the glucosides hydrolyze markedly in artificial intestinal fluid. Such hydrolysis phenomenon can be inhibited by rhubarb. Besides, as Coptis and Rhubarb Combination was fed to mice, the mice’s urine output was found to increase markedly three hours later, reaching the maximum in six hours. The contents of the constituents of scutellaria are BG 102.20 μg/ml, OG n.d., WG 57.37 μg/ml, B 5.70 μg/ml, W 1.39μg/ml, and O 1.74μg/ml. Concentrations of the constituents of scutellaria in serum were found to reach the peak values three hours after feeding of the drug to the mice. (BG 1.82 μg/ml, OG n.d., WG 1.26μg/mlμg/ml, B 1.14μg/mlμg/ml, W 0.18μg/ml and O 0.47μg/ml) Sheu Shuenn-Jyi 許順吉 2001 學位論文 ; thesis 252 zh-TW