The Effects of the Fast and Slow Tempo Music on Sleep Inertia, Mood and Arousal after a Short Daytime Nap

碩士 === 國立政治大學 === 心理學研究所 === 97 === Objective:Sleep inertia (SI) is a transitional state occurring immediately after awakening from sleep that are associated with sleepiness, decreased alertness and decrement in cognitive performance. It has been suggested that SI may be due to a decline in arousal...

Full description

Bibliographic Details
Main Authors: Chou, Chung Yu, 周重佑
Other Authors: Yang, Chien Ming
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/10640269954000257729
Description
Summary:碩士 === 國立政治大學 === 心理學研究所 === 97 === Objective:Sleep inertia (SI) is a transitional state occurring immediately after awakening from sleep that are associated with sleepiness, decreased alertness and decrement in cognitive performance. It has been suggested that SI may be due to a decline in arousal level. Therefore, it was hypothesized that factors likely increasing arousal would reduce the effects of SI. Previous studies showed that fast-tempo music may enhance the level of arousal. The present study was conducted to clarify the role of arousal in SI by exposure to music with different tempos. Methods:Twelve healthy young adults, aged 18 to 31 years, participated in the study. All subjects went through three conditions: a fast-tempo music, a slow-tempo music, and a control (no music) conditions. Music stimuli were applied to subjects awaked from a 20-mins nap, and the subjects were given an addition task and asked to rate their level of subjective sleepiness and arousal on the Karolinska Sleepiness Scale (KSS), visual analog scales (VAS) and emotional rating scales 6 times over an hour. During the test period, their physiological arousal state was recorded, including electroencephalogram (EEG), heart rate variability (HRV), skin conductance responses (SCR), finger temperature. Results:The effects of SI on cognitive throughput and subjective ratings were evident. Their performance on the addition task increased and sleepiness decreased over time. Subjective sleepiness was significantly reduced and physiological arousal level measured by non-specific skin conductance responses (NS-SCRs) and EEG beta power were elevated when the participants were exposed to fast-tempo music. However, cognitive performance was not influenced by music exposure. Conclusion:The present findings suggest that increased arousal level during SI by manipulating music stimuli may decrease subjective sleepiness but have no impact on cognitive performance. This dissociative effect suggests that the dissipation of sleep inertia may not be a function of a general arousal level. Rather, there may be multiple processes that are responsible for different aspects of SI.