A Novel 8-Channel Functional Electrical Stimulation Gait Training System

碩士 === 國立臺南大學 === 系統工程研究所碩士班 === 97 === Gait training is one of most important stages in the process of physiotherapy, in which repeated motion is employed as a way of training in the hope of reactivating patients’ mobility. A number of training methods, including traditional gait training, treadmi...

Full description

Bibliographic Details
Main Authors: Wei-chia Ho, 何偉嘉
Other Authors: Kuen-Horng Tsai
Format: Others
Language:zh-TW
Online Access:http://ndltd.ncl.edu.tw/handle/38890762521175638963
id ndltd-TW-097NTNT5161015
record_format oai_dc
spelling ndltd-TW-097NTNT51610152016-10-23T04:11:18Z http://ndltd.ncl.edu.tw/handle/38890762521175638963 A Novel 8-Channel Functional Electrical Stimulation Gait Training System 八通道新型功能性電刺激步態訓練系統 Wei-chia Ho 何偉嘉 碩士 國立臺南大學 系統工程研究所碩士班 97 Gait training is one of most important stages in the process of physiotherapy, in which repeated motion is employed as a way of training in the hope of reactivating patients’ mobility. A number of training methods, including traditional gait training, treadmill, robot-based rehabilitation gait training, have proven significantly effective. Nevertheless, the fact that patients rely excessively on the “passive” training offered by therapists or machines may lead to a result that fails to meet expectation. This study, therefore, employs Functional electrical stimulation, FES, to the gait rehabilitation robot by using an angle detecting encoder to sense angle change during the process of walk. This feedback signal is sent to a microcontroller unit, MCU, for further assessment. An electrical stimulation then follows to stimulate patient’s muscle and activate its movement, which aims to enhance the therapy effect that is mostly low among reluctant patients by this “active” training method. Through the actual trial, the gait trajectories may, with the assistance of motor-driven angle control, more closely match those presented by Jacquelin Perry MD, and can mimic the walking pattern of an ordinary people. The design of this 8-channel functional electrical stimulator features 200Hz output frequency, 100-300 µs pulse width, and 0-200 mA current, working together to make it a perfect device that is quite close to a gait rehabilitation robot. Moreover, there is the active dynamic training effect in the process of concentric contraction. With the help of FES, muscle atrophy can be effectively slowed down, and functional physical motion becomes more. This study focuses on the integration of an exoskeleton gait rehabilitation robot and FES implementation in the hope that patients can receive active gait training, and achieve a better result. Kuen-Horng Tsai 蔡昆宏 學位論文 ; thesis 125 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺南大學 === 系統工程研究所碩士班 === 97 === Gait training is one of most important stages in the process of physiotherapy, in which repeated motion is employed as a way of training in the hope of reactivating patients’ mobility. A number of training methods, including traditional gait training, treadmill, robot-based rehabilitation gait training, have proven significantly effective. Nevertheless, the fact that patients rely excessively on the “passive” training offered by therapists or machines may lead to a result that fails to meet expectation. This study, therefore, employs Functional electrical stimulation, FES, to the gait rehabilitation robot by using an angle detecting encoder to sense angle change during the process of walk. This feedback signal is sent to a microcontroller unit, MCU, for further assessment. An electrical stimulation then follows to stimulate patient’s muscle and activate its movement, which aims to enhance the therapy effect that is mostly low among reluctant patients by this “active” training method. Through the actual trial, the gait trajectories may, with the assistance of motor-driven angle control, more closely match those presented by Jacquelin Perry MD, and can mimic the walking pattern of an ordinary people. The design of this 8-channel functional electrical stimulator features 200Hz output frequency, 100-300 µs pulse width, and 0-200 mA current, working together to make it a perfect device that is quite close to a gait rehabilitation robot. Moreover, there is the active dynamic training effect in the process of concentric contraction. With the help of FES, muscle atrophy can be effectively slowed down, and functional physical motion becomes more. This study focuses on the integration of an exoskeleton gait rehabilitation robot and FES implementation in the hope that patients can receive active gait training, and achieve a better result.
author2 Kuen-Horng Tsai
author_facet Kuen-Horng Tsai
Wei-chia Ho
何偉嘉
author Wei-chia Ho
何偉嘉
spellingShingle Wei-chia Ho
何偉嘉
A Novel 8-Channel Functional Electrical Stimulation Gait Training System
author_sort Wei-chia Ho
title A Novel 8-Channel Functional Electrical Stimulation Gait Training System
title_short A Novel 8-Channel Functional Electrical Stimulation Gait Training System
title_full A Novel 8-Channel Functional Electrical Stimulation Gait Training System
title_fullStr A Novel 8-Channel Functional Electrical Stimulation Gait Training System
title_full_unstemmed A Novel 8-Channel Functional Electrical Stimulation Gait Training System
title_sort novel 8-channel functional electrical stimulation gait training system
url http://ndltd.ncl.edu.tw/handle/38890762521175638963
work_keys_str_mv AT weichiaho anovel8channelfunctionalelectricalstimulationgaittrainingsystem
AT héwěijiā anovel8channelfunctionalelectricalstimulationgaittrainingsystem
AT weichiaho bātōngdàoxīnxínggōngnéngxìngdiàncìjībùtàixùnliànxìtǒng
AT héwěijiā bātōngdàoxīnxínggōngnéngxìngdiàncìjībùtàixùnliànxìtǒng
AT weichiaho novel8channelfunctionalelectricalstimulationgaittrainingsystem
AT héwěijiā novel8channelfunctionalelectricalstimulationgaittrainingsystem
_version_ 1718388412522692608