The Recovery study of copper ion in aqueous solution using chitosan-coated filter media

碩士 === 嘉南藥理科技大學 === 環境工程與科學系暨研究所 === 99 === Another fully developed field is the use of biological polymers (Biopolymer), such as chitosan and its modification of as an additional or replacement to traditional filter media is employed to treat heavy metal contaminated soil and water. Chitosan can b...

Full description

Bibliographic Details
Main Authors: Ming-ying Tsai, 蔡明穎
Other Authors: Meng-Wei Wan
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/68175832790354084990
Description
Summary:碩士 === 嘉南藥理科技大學 === 環境工程與科學系暨研究所 === 99 === Another fully developed field is the use of biological polymers (Biopolymer), such as chitosan and its modification of as an additional or replacement to traditional filter media is employed to treat heavy metal contaminated soil and water. Chitosan can be derived from crustaceans, such as: shrimp, crabs and other arthropods, by the deacetylation of chitin formation. Chitosan is also recognized as a powerful heavy metal chelating agent. Chitosan has been used to manufacture many industrial products such as environmental quality monitoring and treatment media, medicine, cosmetics and consumer goods including food. In this study, adsorption of copper ions using quartz sand (Sand), chitosan cured in quartz sand (CCS), chitosan cured in quartz sand and cross-linked epichlorohydrin (CCS -ECH) as an adsorbent at different backwash solution pH was investigated and evaluated. Copper wastewater concentration of 100ppm flowing at a rate of 5ml/min is used for the filtration and adsorption experiments. HCl solution of pH 3 and pH5 with volumes of 100 ml and 200 ml is used as a backwash solution. Research reveal quartz sand exhibits the lowest adsorption capacity as compared to the adsorption capacity of CCS and CCS-ECH. In terms of breakthough time, quartz sand also show the fastest time of breakthough of 200 minutes as compared to the 900 minutes breakhtrough time for CCS and CCS-ECH. This is because the cross linking material used for both chitosan-modified media enhanced the coordination between the components and have made the structure of the two adsorbents stronger than ordinary quartz sand. As to the number of times of reuse, CCS-ECH proved to be more economical since at shows the most number of reuse at pH 5 (4 times) and pH 3 (3 times).