A Concurrent Dual-Band Dual-Mode Transceiver IC for Wireless Precipitation Sensory Network

碩士 === 國立交通大學 === 電子工程學系 電子研究所 === 101 === Radio frequency integrated circuits design is entering a mixed signal, holistic system integration era. It is an assured trend that RF front-ends are integrated in low-cost CMOS process with low frequency high throughput analog-to-digital interfaces as well...

Full description

Bibliographic Details
Main Authors: Lee, Tao-Yi, 李道一
Other Authors: Wang, Yu-Jiu
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/09978737091177035152
Description
Summary:碩士 === 國立交通大學 === 電子工程學系 電子研究所 === 101 === Radio frequency integrated circuits design is entering a mixed signal, holistic system integration era. It is an assured trend that RF front-ends are integrated in low-cost CMOS process with low frequency high throughput analog-to-digital interfaces as well as mighty digital signal processing blocks in state-of-the-art SoC chips. For RF front-ends, narrow-band systems are being replaced by ultra wide-band or multi-band systems. In addition, multi-mode, programmable RF circuits are gaining its ground in the promising ``SDR" (software defined radio) systems. In this thesis, a new 5.8/10.5GHz; 5.8/24GHz dual-band, dual-mode radio frequency transceiver architecture is proposed, analyzed and implemented in TSMC 65 nm CMOS process under 1mmx1mm die area. The system is capable of monitoring dual-band path loss ratio when two or more transceivers are operating. Its self-calibrating feature immunizes the system from process, voltage, and temperature variation. Thus the path loss can be monitored under a constant and reliable reference. This specific feature enables distributed computerized tomography, which assists meteorologists to reconstruct grids of real-time rain fall strengths in mountain areas and resolves the weakness of meteorological radars. To overcome the obstacles in radio-frequency VLSI implementation, design methodologies, such as custom RF passive device modeling, EM co-simulation, and behavioral modeling are refined to suit the latest trend of highly integrated mixed signal integrated circuits. The most challenging functional block in monolithic CMOS transceiver -- Power Amplifiers, are discussed in its own chapter with emphasis on a newly proposed passive network synthesis technique.