none

碩士 === 國立中央大學 === 化學工程與材料工程學系 === 103 === In this study, we first discussed the effect of perovskite film with different precursor solution by solvent engineering process. We used the mix solvent (GBL and DMSO) to dissolve CH3NH3PbI3 then following by toluene drop-casting while spinning. The uniform...

Full description

Bibliographic Details
Main Authors: Kai-hung Wang, 王凱弘
Other Authors: 李坤穆
Format: Others
Language:zh-TW
Published: 2015
Online Access:http://ndltd.ncl.edu.tw/handle/8xjb2t
Description
Summary:碩士 === 國立中央大學 === 化學工程與材料工程學系 === 103 === In this study, we first discussed the effect of perovskite film with different precursor solution by solvent engineering process. We used the mix solvent (GBL and DMSO) to dissolve CH3NH3PbI3 then following by toluene drop-casting while spinning. The uniform and dense perovskite layers would formed by thermal process and improve the performance of power- conversion efficiency successfully. Then, the pervoskite film of annealing temperature and time, the thickness of perovskite film and electron collecting layer for optimizing modification were also investigated. In addition, the drop-casting solvent treatment also determined the key of the final perovskite film. It is important that choosing the drop-casting solvent. Therefore, we also discussed it and applied it in CH3NH3Pb(I1-xBrx)3 layer. The result in planer heterojunction structure perovskite solar cells showed that the efficiency could reach 12.85% and 12.55% with no hysteresis by annealing CH3NH3PbI3 layer at 100oC for 1 min and CH3NH3Pb(I0.95Br0.05)3 layer at 100oC for 10 min, respectively. Finally, we applied the optimal conditions of CH3NH3PbI3 layer to mesoscopic heterojunction structure solar cell. We controlled compact layer of TiOx and mesoscopic layer by spin-coating rate and modified TiO2 working electrode by post-treating with TiCl4(aq) to enhance the open-circuit voltage (Voc) and short-circuit (Jsc), and enabled efficiency improved to 14.20%.On the other hand, we try to use the FAPbI3 and (FAPbI3)0.85(MAPbBr3)0.15 in this device structure. But the Jsc and efficiency was barely 19.93 mA/cm2 and 9.85%, 17.48 mA/cm2 and 9.71%, respectively. The Voc improved from 0.838 to 1.004 V by using the latter.