Land-use & Water Quality in the Headwaters of the Alafia River Watershed

The objective of this study is to investigate land-use changes and water quality trends within the headwaters of the Alafia River watershed. Water quality data were obtained from the Environmental Protection Commission of Hillsborough County (EPCHC). Eleven water quality parameters selected for anal...

Full description

Bibliographic Details
Main Author: Swindasz, Jaime Alison
Format: Others
Published: Scholar Commons 2015
Subjects:
Online Access:http://scholarcommons.usf.edu/etd/6035
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7231&context=etd
id ndltd-USF-oai-scholarcommons.usf.edu-etd-7231
record_format oai_dc
spelling ndltd-USF-oai-scholarcommons.usf.edu-etd-72312018-01-17T05:37:38Z Land-use & Water Quality in the Headwaters of the Alafia River Watershed Swindasz, Jaime Alison The objective of this study is to investigate land-use changes and water quality trends within the headwaters of the Alafia River watershed. Water quality data were obtained from the Environmental Protection Commission of Hillsborough County (EPCHC). Eleven water quality parameters selected for analysis included: temperature (˚C), dissolved oxygen (DO), percent saturation of DO, conductivity, pH, total phosphorous (TP), total nitrogen (TN), ammonium, chlorophyll-a (uncorrected), fecal coliforms, and enterococci. ArcMap® & SWFWMD data were used to map EPCHC sampling stations, calculate contributing watershed size, and determine land-use changes over the course of the sampling period; 17 stations were chosen for this study. The annual average for each of the water quality parameters was calculated along with a Mann-Kendall Trend Analysis in order to determine if any of the observed trends were statistically significant. A non-parametric Kendall’s tau-b correlation and stepwise multiple linear regression tests were conducted in SPSS to determine if any statistically significant relationships between water quality data, land-use and basin size exist. The land-use results showed every basin consisted of some percentage of Low Density Residential, Cropland & Pastureland, Reservoirs, and Streams & Lake Swamps. In addition, no basin comprised of more than 20% wetlands and often it appears urbanization was at the sacrifice of agricultural lands, as opposed to wetlands. The trends in water quality showed eight of the 17 basins had at least one statistically significant trend. Analysis of the data used for this study has shown instances where water quality measurements were in violation of state standards. Changes in water quality can be statistically related to changes in land-use and basin size as both the correlation and the regression showed consistent relationships between several LULC types and water quality parameters: increases in Commercial & Services causes increased nutrients (TP and TN); Cropland & Pastureland causes decreased DO and DO% Saturation; increases in Tree Crops causes a decrease in pH; increasing Other Open Lands Rural causes a decrease in temperature; and increases in Shrub & Brushland cause decreases in conductivity and pH. As these relationships are based on the results from both analyses, it would seem that these relationships are the most reliable, and are key results of the study. These key relationships might be areas that future water resource managers may want to focus on in order to more efficiently improve or regulate water quality within headwater streams. 2015-11-04T08:00:00Z text application/pdf http://scholarcommons.usf.edu/etd/6035 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7231&context=etd default Graduate Theses and Dissertations Scholar Commons Land cover FLUCCS Tampa Florida Geographic Information Systems Mann- Kendall Trend Analysis Kendall’s tau-b Correlation Multiple Linear Regression Environmental Sciences Other Environmental Sciences Water Resource Management
collection NDLTD
format Others
sources NDLTD
topic Land cover
FLUCCS
Tampa
Florida
Geographic Information Systems
Mann- Kendall Trend Analysis
Kendall’s tau-b Correlation
Multiple Linear Regression
Environmental Sciences
Other Environmental Sciences
Water Resource Management
spellingShingle Land cover
FLUCCS
Tampa
Florida
Geographic Information Systems
Mann- Kendall Trend Analysis
Kendall’s tau-b Correlation
Multiple Linear Regression
Environmental Sciences
Other Environmental Sciences
Water Resource Management
Swindasz, Jaime Alison
Land-use & Water Quality in the Headwaters of the Alafia River Watershed
description The objective of this study is to investigate land-use changes and water quality trends within the headwaters of the Alafia River watershed. Water quality data were obtained from the Environmental Protection Commission of Hillsborough County (EPCHC). Eleven water quality parameters selected for analysis included: temperature (˚C), dissolved oxygen (DO), percent saturation of DO, conductivity, pH, total phosphorous (TP), total nitrogen (TN), ammonium, chlorophyll-a (uncorrected), fecal coliforms, and enterococci. ArcMap® & SWFWMD data were used to map EPCHC sampling stations, calculate contributing watershed size, and determine land-use changes over the course of the sampling period; 17 stations were chosen for this study. The annual average for each of the water quality parameters was calculated along with a Mann-Kendall Trend Analysis in order to determine if any of the observed trends were statistically significant. A non-parametric Kendall’s tau-b correlation and stepwise multiple linear regression tests were conducted in SPSS to determine if any statistically significant relationships between water quality data, land-use and basin size exist. The land-use results showed every basin consisted of some percentage of Low Density Residential, Cropland & Pastureland, Reservoirs, and Streams & Lake Swamps. In addition, no basin comprised of more than 20% wetlands and often it appears urbanization was at the sacrifice of agricultural lands, as opposed to wetlands. The trends in water quality showed eight of the 17 basins had at least one statistically significant trend. Analysis of the data used for this study has shown instances where water quality measurements were in violation of state standards. Changes in water quality can be statistically related to changes in land-use and basin size as both the correlation and the regression showed consistent relationships between several LULC types and water quality parameters: increases in Commercial & Services causes increased nutrients (TP and TN); Cropland & Pastureland causes decreased DO and DO% Saturation; increases in Tree Crops causes a decrease in pH; increasing Other Open Lands Rural causes a decrease in temperature; and increases in Shrub & Brushland cause decreases in conductivity and pH. As these relationships are based on the results from both analyses, it would seem that these relationships are the most reliable, and are key results of the study. These key relationships might be areas that future water resource managers may want to focus on in order to more efficiently improve or regulate water quality within headwater streams.
author Swindasz, Jaime Alison
author_facet Swindasz, Jaime Alison
author_sort Swindasz, Jaime Alison
title Land-use & Water Quality in the Headwaters of the Alafia River Watershed
title_short Land-use & Water Quality in the Headwaters of the Alafia River Watershed
title_full Land-use & Water Quality in the Headwaters of the Alafia River Watershed
title_fullStr Land-use & Water Quality in the Headwaters of the Alafia River Watershed
title_full_unstemmed Land-use & Water Quality in the Headwaters of the Alafia River Watershed
title_sort land-use & water quality in the headwaters of the alafia river watershed
publisher Scholar Commons
publishDate 2015
url http://scholarcommons.usf.edu/etd/6035
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7231&context=etd
work_keys_str_mv AT swindaszjaimealison landusewaterqualityintheheadwatersofthealafiariverwatershed
_version_ 1718611061696888832