Impacts of environmental stressors on the River Itchen Ranunculus community

As fundamental components of chalk stream ecosystems, aquatic macrophytes are intrinsically linked to flow regime and physicochemical stability. Assessment of the River Itchen, Hampshire, a classic lowland chalk stream faced with ecosystem degradation, indicates the significance of the discharge reg...

Full description

Bibliographic Details
Main Author: Poynter, Alexander James Winton
Published: University of Birmingham 2014
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607253
id ndltd-bl.uk-oai-ethos.bl.uk-607253
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6072532019-04-03T06:27:02ZImpacts of environmental stressors on the River Itchen Ranunculus communityPoynter, Alexander James Winton2014As fundamental components of chalk stream ecosystems, aquatic macrophytes are intrinsically linked to flow regime and physicochemical stability. Assessment of the River Itchen, Hampshire, a classic lowland chalk stream faced with ecosystem degradation, indicates the significance of the discharge regime for controlling both water quality and the spatiotemporal distribution of macrophyte assemblages. Experimental studies using outdoor artificial stream mesocosms signify their effectiveness for macrophyte growth studies and in identifying causality attributed to environmental stressors. In such experiments, the keystone chalk stream macrophyte Ranunculus pseudofluitans was identified as having preferences to moderate water velocities, with morphological and physiological trait responses causing distinct morphotypes depending on development in optimal or sub-optimal conditions. Furthermore, when subjected to flow, nutrient and periphytic competitive stressors, main trait responses were categorised as developmental, functional and confounded, respectively, with most traits linked to healthy development associated with flow. In addition, significant filamentous algal growth under low-nutrient conditions, but removal in increased velocities, highlights the importance of flow as a control mechanism. Examination of ontogenetic effects suggest trait variation with age, and overall developmental stage linked to a combination of environmental and plant age effects. This study demonstrates the necessity for good, consistent flow regimes in chalk streams, which enhances macrophyte community diversity, promoting development of keystone taxa, which in turn encourage beneficial heterogeneous flow patterns.577.6GE Environmental SciencesUniversity of Birminghamhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607253http://etheses.bham.ac.uk//id/eprint/5112/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 577.6
GE Environmental Sciences
spellingShingle 577.6
GE Environmental Sciences
Poynter, Alexander James Winton
Impacts of environmental stressors on the River Itchen Ranunculus community
description As fundamental components of chalk stream ecosystems, aquatic macrophytes are intrinsically linked to flow regime and physicochemical stability. Assessment of the River Itchen, Hampshire, a classic lowland chalk stream faced with ecosystem degradation, indicates the significance of the discharge regime for controlling both water quality and the spatiotemporal distribution of macrophyte assemblages. Experimental studies using outdoor artificial stream mesocosms signify their effectiveness for macrophyte growth studies and in identifying causality attributed to environmental stressors. In such experiments, the keystone chalk stream macrophyte Ranunculus pseudofluitans was identified as having preferences to moderate water velocities, with morphological and physiological trait responses causing distinct morphotypes depending on development in optimal or sub-optimal conditions. Furthermore, when subjected to flow, nutrient and periphytic competitive stressors, main trait responses were categorised as developmental, functional and confounded, respectively, with most traits linked to healthy development associated with flow. In addition, significant filamentous algal growth under low-nutrient conditions, but removal in increased velocities, highlights the importance of flow as a control mechanism. Examination of ontogenetic effects suggest trait variation with age, and overall developmental stage linked to a combination of environmental and plant age effects. This study demonstrates the necessity for good, consistent flow regimes in chalk streams, which enhances macrophyte community diversity, promoting development of keystone taxa, which in turn encourage beneficial heterogeneous flow patterns.
author Poynter, Alexander James Winton
author_facet Poynter, Alexander James Winton
author_sort Poynter, Alexander James Winton
title Impacts of environmental stressors on the River Itchen Ranunculus community
title_short Impacts of environmental stressors on the River Itchen Ranunculus community
title_full Impacts of environmental stressors on the River Itchen Ranunculus community
title_fullStr Impacts of environmental stressors on the River Itchen Ranunculus community
title_full_unstemmed Impacts of environmental stressors on the River Itchen Ranunculus community
title_sort impacts of environmental stressors on the river itchen ranunculus community
publisher University of Birmingham
publishDate 2014
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607253
work_keys_str_mv AT poynteralexanderjameswinton impactsofenvironmentalstressorsontheriveritchenranunculuscommunity
_version_ 1719012925049405440