Intracoronal stress transfer through enamel following RBC photopolymerisation: A synchrotron X-ray study

Objectives: To measure the spatial distribution of crystallographic strain in tooth enamel induced by the photo-polymerisation of a dimethacrylate resin based composite cavity restoration. Methods: Six sound first premolar teeth, allocated into two groups (n = 3), were prepared with mesio-occlusal d...

Full description

Bibliographic Details
Main Authors: Addison, O. (Author), Al-Jawad, M. (Author), Martin, R.A (Author), Siddiqui, S. (Author), Sirovica, S. (Author), Watts, D.C (Author), Wood, D.J (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2018
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04660nam a2200877Ia 4500
001 10.1016-j.dental.2018.07.005
008 220706s2018 CNT 000 0 und d
020 |a 01095641 (ISSN) 
245 1 0 |a Intracoronal stress transfer through enamel following RBC photopolymerisation: A synchrotron X-ray study 
260 0 |b Elsevier Inc.  |c 2018 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.dental.2018.07.005 
520 3 |a Objectives: To measure the spatial distribution of crystallographic strain in tooth enamel induced by the photo-polymerisation of a dimethacrylate resin based composite cavity restoration. Methods: Six sound first premolar teeth, allocated into two groups (n = 3), were prepared with mesio-occlusal distal cavities. The enamel was machined at the point of maximum convexity on the outer tooth to create a vertical fin of thickness 100 μm and 0.5 mm depth to allow for synchrotron X-ray diffraction measurements. 2D diffraction patterns were used to determine crystallite orientation and quantify changes in the hydroxyapatite crystal lattice parameters, before and after photo-polymerisation of a composite material placed in the cavity, to calculate strain in the respective axis. The composite was photo-polymerised with either relatively high (1200 mW cm−2, group 1) or low (480 mW cm−2, group 2) irradiances using LED or quartz halogen light sources, respectively. A paired t-test was used to determine significant differences in strain between irradiance protocols at ɑ = 0.001. Results: Photo-polymerisation of the composite in the adjacent cavity induced significant changes in both the crystallographic c and a axes of the enamel measurement area. However the magnitude of strain was low with ∼0.1% difference before and after composite photo-polymerisation. Strain in enamel was not uniformly distributed and varied spatially as a function of crystallite orientation. Increased alignment of crystallites perpendicular to the cavity wall was associated with higher c axis strain. Additionally, strain was significantly greater in the c (p < 0.001) and a axis (p < 0.001) when using a high irradiance photo-polymerisation protocol. Significance: Although cuspal deflection is routinely measured to indirectly assess the ‘global’ effect of composite shrinkage on the tooth-restoration complex, here we show that absolute strains generated in enamel are low, indicating strain relief mechanisms may be operative. The use of low irradiance protocols for photo-polymerisation resulted in reduced strain. © 2018 The Academy of Dental Materials 
650 0 4 |a Bicuspid 
650 0 4 |a chemistry 
650 0 4 |a Composite Resins 
650 0 4 |a Crystal orientation 
650 0 4 |a Crystallite orientation 
650 0 4 |a Crystallites 
650 0 4 |a Crystallographic strain 
650 0 4 |a Crystallography, X-Ray 
650 0 4 |a Dental Cavity Preparation 
650 0 4 |a Dental Enamel 
650 0 4 |a Dental Leakage 
650 0 4 |a dental surgery 
650 0 4 |a Durapatite 
650 0 4 |a enamel 
650 0 4 |a Enamel 
650 0 4 |a Enameling 
650 0 4 |a Enamels 
650 0 4 |a Halogen light sources 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hydroxyapatite 
650 0 4 |a Hydroxyapatite 
650 0 4 |a Hydroxyapatite crystals 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a in vitro study 
650 0 4 |a In Vitro Techniques 
650 0 4 |a Light sources 
650 0 4 |a mechanical stress 
650 0 4 |a Photo-polymerisation 
650 0 4 |a Photopolymerization 
650 0 4 |a polymerization 
650 0 4 |a Polymerization 
650 0 4 |a premolar tooth 
650 0 4 |a procedures 
650 0 4 |a radiation response 
650 0 4 |a resin 
650 0 4 |a Resin based composite 
650 0 4 |a Resin-based composite 
650 0 4 |a Resins 
650 0 4 |a Restoration 
650 0 4 |a Shrinkage 
650 0 4 |a Strain 
650 0 4 |a Stress 
650 0 4 |a Stress, Mechanical 
650 0 4 |a Stresses 
650 0 4 |a synchrotron 
650 0 4 |a Synchrotron x ray diffraction 
650 0 4 |a Synchrotron x rays 
650 0 4 |a Synchrotron X-ray micro-focussed diffraction 
650 0 4 |a Synchrotrons 
650 0 4 |a tooth disease 
650 0 4 |a Tooth enamel 
650 0 4 |a X ray crystallography 
650 0 4 |a X ray diffraction 
650 0 4 |a X-Ray Diffraction 
700 1 |a Addison, O.  |e author 
700 1 |a Al-Jawad, M.  |e author 
700 1 |a Martin, R.A.  |e author 
700 1 |a Siddiqui, S.  |e author 
700 1 |a Sirovica, S.  |e author 
700 1 |a Watts, D.C.  |e author 
700 1 |a Wood, D.J.  |e author 
773 |t Dental Materials