Spinodal Decomposition in Plastically Deformed Fe–Cr–Co Magnet Alloy

Fe–Cr–Co alloys are becoming important as half-hard magnet which can be subjected to plastic deformation process for their novel applications including non-contact electromagnetic brake because of its large hysteresis loss. Its magnetic hardness depends on the modulated structure formed by spinodal...

Full description

Bibliographic Details
Main Authors: Chiba, A. (Author), Iwaizako, H. (Author), Koizumi, Y. (Author), Kuritani, K. (Author), Ohnuma, M. (Author), Okugawa, M. (Author), Saito, K. (Author), Tachiya, Y. (Author)
Format: Article
Language:English
Published: Iron and Steel Institute of Japan 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02865nam a2200481Ia 4500
001 10.2355-isijinternational.ISIJINT-2021-441
008 220706s2022 CNT 000 0 und d
020 |a 09151559 (ISSN) 
245 1 0 |a Spinodal Decomposition in Plastically Deformed Fe–Cr–Co Magnet Alloy 
260 0 |b Iron and Steel Institute of Japan  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.2355/isijinternational.ISIJINT-2021-441 
520 3 |a Fe–Cr–Co alloys are becoming important as half-hard magnet which can be subjected to plastic deformation process for their novel applications including non-contact electromagnetic brake because of its large hysteresis loss. Its magnetic hardness depends on the modulated structure formed by spinodal decomposition. It is important to clarify the effect of plastic deformation on the spinodal decomposition for optimizing the heat treatment after plastic deformation process. In the present study, we examined the spinodal-decomposed structures in Fe–Cr–Co sheets cold-rolled to 25% reduction and that without rolling to clarify the influences of cold rolling. Also, spinodal decomposition under the presence of dislocation structure have been simulated by phase field method for the case with the presence of dislocation cell boundary with a high in-plane solute diffusivity at various migrating speed. It has been found that the spinodal decomposition is accelerated around dislocation owing to the elastic field and higher diffusivity, which results in inhomogeneous microstructure with various wave length of modulation. The existence of dislocation enhances the initiation of phase decomposition and the growth particles. The decomposed structure greatly depends on the in-plane solute diffusivity and migrating speed of the dislocation cell boundary. © 2022 The Iron and Steel Institute of Japan. 
650 0 4 |a Cell boundary 
650 0 4 |a Cobalt alloys 
650 0 4 |a Cold rolling 
650 0 4 |a Deformation process 
650 0 4 |a Diffusion 
650 0 4 |a dislocation 
650 0 4 |a Dislocation 
650 0 4 |a Dislocation cells 
650 0 4 |a Fe-Cr-Co alloy 
650 0 4 |a Hard magnets 
650 0 4 |a Magnets 
650 0 4 |a Metal cladding 
650 0 4 |a Non-contact 
650 0 4 |a Novel applications 
650 0 4 |a Phase field methods 
650 0 4 |a Phase transitions 
650 0 4 |a phase-field method 
650 0 4 |a Plastic deformation 
650 0 4 |a semi-hard magnet 
650 0 4 |a Semi-hard magnet 
650 0 4 |a spinodal decomposition 
650 0 4 |a Spinodal decomposition 
700 1 |a Chiba, A.  |e author 
700 1 |a Iwaizako, H.  |e author 
700 1 |a Koizumi, Y.  |e author 
700 1 |a Kuritani, K.  |e author 
700 1 |a Ohnuma, M.  |e author 
700 1 |a Okugawa, M.  |e author 
700 1 |a Saito, K.  |e author 
700 1 |a Tachiya, Y.  |e author 
773 |t ISIJ International