Using differential scanning calorimetry as an analytical tool for ultrafine-grained metals processed by severe plastic deformation

Differential Scanning Calorimetry (DSC) is a thermal analysis technique that measures the energy absorbed or released by a sample as a function of temperature or time. Analysis by DSC has wide applications for examining solid-state reactions and solid-liquid reactions in many different materials. Qu...

Full description

Bibliographic Details
Main Authors: Gao, Nong (Author), Starink, Marco J. (Author), Langdon, Terence G. (Author)
Format: Article
Language:English
Published: 2009.
Subjects:
Online Access:Get fulltext
Description
Summary:Differential Scanning Calorimetry (DSC) is a thermal analysis technique that measures the energy absorbed or released by a sample as a function of temperature or time. Analysis by DSC has wide applications for examining solid-state reactions and solid-liquid reactions in many different materials. Quantitative analyses of the kinetics of reactions may be assessed by reviewing the interrelation between activation energy analysis methods. In recent years, DSC has been applied in the examination and analysis of bulk ultrafine-grained materials processed through the application of Severe Plastic Deformation (SPD). This overview examines these recent reports with reference to materials processed using the procedures of Equal-Channel Angular Pressing (ECAP), High-Pressure Torsion (HPT) and Accumulative Roll-Bonding (ARB). In addition, some critical issues related to DSC analysis are also discussed.