Design, Fabrication, and Characterization of a High Q Silica Nanobeam Cavity With Orthogonal Resonant Modes
We design and fabricate a high <inline-formula><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> silica nanobeam cavity that supports both transverse electric (TE) and transverse magnetic modes in the 1.55  <inline-formula><tex-math nota...
| الحاوية / القاعدة: | IEEE Photonics Journal |
|---|---|
| المؤلفون الرئيسيون: | , , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
IEEE
2017-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/8046146/ |
| الملخص: | We design and fabricate a high <inline-formula><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> silica nanobeam cavity that supports both transverse electric (TE) and transverse magnetic modes in the 1.55  <inline-formula><tex-math notation="LaTeX">$\mathrm{\mu }$</tex-math></inline-formula>m wavelength range. The <inline-formula><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> values obtained for both modes exceed <inline-formula><tex-math notation="LaTeX">$10^4$</tex-math></inline-formula> and are the highest reported values for photonic crystal (PhC) nanocavities made of silica. We also investigate the optimum conditions for coupling with the cavity in a side-coupled configuration. We achieve a coupling efficiency of 87% with the TE mode while maintaining a loaded <inline-formula><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> of more than <inline-formula><tex-math notation="LaTeX">$10^4$</tex-math></inline-formula>. We also found that the presence of a coupled waveguide reduces the intrinsic <inline-formula><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> of the cavity, depending on the gap distance. This provides useful quantitative information for establishing an efficient scheme for coupling with low-index PhC nanocavities. |
|---|---|
| تدمد: | 1943-0655 |
