Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS

Abstract Poly(ethylene oxide) (PEO)‐based solid composite electrolytes suffer from poor conductivity and lithium dendrite growth, especially toward the metallic lithium metal anode. In this study, succinonitrile (SN) is incorporated into a PEO composite electrolyte to fabricate an electrode‐compatib...

全面介绍

书目详细资料
发表在:Advanced Science
Main Authors: Yuxin Liang, Fabian A.C. Apfelbeck, Kun Sun, Yingying Yan, Lyuyang Cheng, Guangjiu Pan, Tianle Zheng, Yajun Cheng, Anton Davydok, Christina Krywka, Peter Müller‐Buschbaum
格式: 文件
语言:英语
出版: Wiley 2025-03-01
主题:
在线阅读:https://doi.org/10.1002/advs.202414714
_version_ 1849424927137988608
author Yuxin Liang
Fabian A.C. Apfelbeck
Kun Sun
Yingying Yan
Lyuyang Cheng
Guangjiu Pan
Tianle Zheng
Yajun Cheng
Anton Davydok
Christina Krywka
Peter Müller‐Buschbaum
author_facet Yuxin Liang
Fabian A.C. Apfelbeck
Kun Sun
Yingying Yan
Lyuyang Cheng
Guangjiu Pan
Tianle Zheng
Yajun Cheng
Anton Davydok
Christina Krywka
Peter Müller‐Buschbaum
author_sort Yuxin Liang
collection DOAJ
container_title Advanced Science
description Abstract Poly(ethylene oxide) (PEO)‐based solid composite electrolytes suffer from poor conductivity and lithium dendrite growth, especially toward the metallic lithium metal anode. In this study, succinonitrile (SN) is incorporated into a PEO composite electrolyte to fabricate an electrode‐compatible electrolyte with good electrochemical performance. The SN‐doped electrolyte successfully inhibits the lithium dendrite growth and facilitates the SEI layer formation, as determined by the operando nanofocus wide‐angle X‐ray scattering (nWAXS), meanwhile, stably cycled over 500 h in Li/SN‐PEO/Li cell. Apart from the observation of lithium dendrite, the robust SEI layer formation mechanism in the first cycle is investigated in the SN‐enhanced composite electrolyte by nWAXS. The inorganic electrochemical reaction products, LiF and Li3N, are found to initially deposit on the electrolyte side, progressively extending toward the lithium metal anode. This growth process effectively protected the metallic lithium, inhibited electron transfer, and facilitated Li⁺ transport. The study not only demonstrates a high‐performance interfacial‐stable lithium metal battery with composite electrolyte but also introduces a novel strategy for real‐time visualizing dendrite formation and SEI growth directing at the interface area of electrolyte and metallic lithium.
format Article
id doaj-art-0bec1f10db72489484116a0a443c61a4
institution Directory of Open Access Journals
issn 2198-3844
language English
publishDate 2025-03-01
publisher Wiley
record_format Article
spelling doaj-art-0bec1f10db72489484116a0a443c61a42025-08-20T03:41:59ZengWileyAdvanced Science2198-38442025-03-011212n/an/a10.1002/advs.202414714Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXSYuxin Liang0Fabian A.C. Apfelbeck1Kun Sun2Yingying Yan3Lyuyang Cheng4Guangjiu Pan5Tianle Zheng6Yajun Cheng7Anton Davydok8Christina Krywka9Peter Müller‐Buschbaum10TUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyCollege of Renewable Energy Hohai University Hehai Avenue 1915 Changzhou Jiangsu 213220 P. R. ChinaHelmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht GermanyHelmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht GermanyTUM School of Natural Sciences Department of Physics Chair for Functional Materials Technical University of Munich James‐Franck‐Str. 1 85748 Garching GermanyAbstract Poly(ethylene oxide) (PEO)‐based solid composite electrolytes suffer from poor conductivity and lithium dendrite growth, especially toward the metallic lithium metal anode. In this study, succinonitrile (SN) is incorporated into a PEO composite electrolyte to fabricate an electrode‐compatible electrolyte with good electrochemical performance. The SN‐doped electrolyte successfully inhibits the lithium dendrite growth and facilitates the SEI layer formation, as determined by the operando nanofocus wide‐angle X‐ray scattering (nWAXS), meanwhile, stably cycled over 500 h in Li/SN‐PEO/Li cell. Apart from the observation of lithium dendrite, the robust SEI layer formation mechanism in the first cycle is investigated in the SN‐enhanced composite electrolyte by nWAXS. The inorganic electrochemical reaction products, LiF and Li3N, are found to initially deposit on the electrolyte side, progressively extending toward the lithium metal anode. This growth process effectively protected the metallic lithium, inhibited electron transfer, and facilitated Li⁺ transport. The study not only demonstrates a high‐performance interfacial‐stable lithium metal battery with composite electrolyte but also introduces a novel strategy for real‐time visualizing dendrite formation and SEI growth directing at the interface area of electrolyte and metallic lithium.https://doi.org/10.1002/advs.202414714all‐solid‐state lithium metal batteriescomposite electrolyteinterfacial behavioroperando studyx‐ray wide‐angle scattering
spellingShingle Yuxin Liang
Fabian A.C. Apfelbeck
Kun Sun
Yingying Yan
Lyuyang Cheng
Guangjiu Pan
Tianle Zheng
Yajun Cheng
Anton Davydok
Christina Krywka
Peter Müller‐Buschbaum
Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
all‐solid‐state lithium metal batteries
composite electrolyte
interfacial behavior
operando study
x‐ray wide‐angle scattering
title Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
title_full Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
title_fullStr Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
title_full_unstemmed Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
title_short Unveiling the Li/Electrolyte Interface Behavior for Dendrite‐Free All‐Solid‐State Lithium Metal Batteries by Operando Nano‐Focus WAXS
title_sort unveiling the li electrolyte interface behavior for dendrite free all solid state lithium metal batteries by operando nano focus waxs
topic all‐solid‐state lithium metal batteries
composite electrolyte
interfacial behavior
operando study
x‐ray wide‐angle scattering
url https://doi.org/10.1002/advs.202414714
work_keys_str_mv AT yuxinliang unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT fabianacapfelbeck unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT kunsun unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT yingyingyan unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT lyuyangcheng unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT guangjiupan unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT tianlezheng unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT yajuncheng unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT antondavydok unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT christinakrywka unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs
AT petermullerbuschbaum unveilingthelielectrolyteinterfacebehaviorfordendritefreeallsolidstatelithiummetalbatteriesbyoperandonanofocuswaxs