Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle

Nowadays, in some populations, the number of genotyped animals is too large to obtain the inverse of the genomic relationship matrix. The algorithm for proven and young animals (APY) can be used to overcome this problem. In the present work, different strategies for defining core animals in APY were...

Full description

Bibliographic Details
Published in:Animal
Main Authors: A. Cesarani, M. Bermann, C. Dimauro, L. Degano, D. Vicario, D. Lourenco, N.P.P. Macciotta
Format: Article
Language:English
Published: Elsevier 2023-04-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1751731123000629
_version_ 1851936621097648128
author A. Cesarani
M. Bermann
C. Dimauro
L. Degano
D. Vicario
D. Lourenco
N.P.P. Macciotta
author_facet A. Cesarani
M. Bermann
C. Dimauro
L. Degano
D. Vicario
D. Lourenco
N.P.P. Macciotta
author_sort A. Cesarani
collection DOAJ
container_title Animal
description Nowadays, in some populations, the number of genotyped animals is too large to obtain the inverse of the genomic relationship matrix. The algorithm for proven and young animals (APY) can be used to overcome this problem. In the present work, different strategies for defining core animals in APY were tested using either simulated or real data. In particular, core definitions based on random choice or on the contribution to the genomic relationship matrix (GCONTR) calculated using Principal Component Analysis were tested. Core sizes able to explain 90, 95, 98, and 99% of the total variance of the genomic relationship matrix (G) were used. Analyzed phenotypes were three simulated traits for 3 000 individuals, and milkability records for 136 406 Italian Simmental cows. The number of genotypes was 4 100 for the simulated dataset, and 11 636 for the Simmental data, respectively. The GCONTR values in Simmental dataset were moderately correlated with the analyzed phenotype, and they showed a decreasing trend according to the year of birth of genotyped animals. The accuracy increased as the size of the core increased in both datasets. The inclusion in the core of animals with largest GCONTR values led to the lowest accuracies (0.50 and 0.71 for the simulated and Simmental datasets, respectively; average across traits and core sizes). On the contrary, the selection of animals with the lowest rank according to their contribution to the G provided slightly higher accuracies, especially in the simulated dataset (0.68 for the simulated dataset, and 0.76 for the Simmental data; average across traits and core sizes). In real data, particularly for larger sizes of core animals, the criteria of choice appear less important, confirming the results of earlier studies. Anyway, the inclusion in the core of animals with the lowest values of GCONTR led to increases in accuracy. These are preliminary results based on a small sample size that need to be confirmed on a larger number of genotypes.
format Article
id doaj-art-116a3d56cd53431fad3f4ea3284fff75
institution Directory of Open Access Journals
issn 1751-7311
language English
publishDate 2023-04-01
publisher Elsevier
record_format Article
spelling doaj-art-116a3d56cd53431fad3f4ea3284fff752025-08-19T21:52:12ZengElsevierAnimal1751-73112023-04-0117410076610.1016/j.animal.2023.100766Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattleA. Cesarani0M. Bermann1C. Dimauro2L. Degano3D. Vicario4D. Lourenco5N.P.P. Macciotta6Dipartimento di Agraria, Università di Sassari, 07100 Sassari, Italy; Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USA; Corresponding author at: Dipartimento di Agraria, Università di Sassari, 07100 Sassari, Italy.Department of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USADipartimento di Agraria, Università di Sassari, 07100 Sassari, ItalyAssociazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), 33100 Udine, ItalyAssociazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI), 33100 Udine, ItalyDepartment of Animal and Dairy Science, University of Georgia, 30602 Athens, GA, USADipartimento di Agraria, Università di Sassari, 07100 Sassari, ItalyNowadays, in some populations, the number of genotyped animals is too large to obtain the inverse of the genomic relationship matrix. The algorithm for proven and young animals (APY) can be used to overcome this problem. In the present work, different strategies for defining core animals in APY were tested using either simulated or real data. In particular, core definitions based on random choice or on the contribution to the genomic relationship matrix (GCONTR) calculated using Principal Component Analysis were tested. Core sizes able to explain 90, 95, 98, and 99% of the total variance of the genomic relationship matrix (G) were used. Analyzed phenotypes were three simulated traits for 3 000 individuals, and milkability records for 136 406 Italian Simmental cows. The number of genotypes was 4 100 for the simulated dataset, and 11 636 for the Simmental data, respectively. The GCONTR values in Simmental dataset were moderately correlated with the analyzed phenotype, and they showed a decreasing trend according to the year of birth of genotyped animals. The accuracy increased as the size of the core increased in both datasets. The inclusion in the core of animals with largest GCONTR values led to the lowest accuracies (0.50 and 0.71 for the simulated and Simmental datasets, respectively; average across traits and core sizes). On the contrary, the selection of animals with the lowest rank according to their contribution to the G provided slightly higher accuracies, especially in the simulated dataset (0.68 for the simulated dataset, and 0.76 for the Simmental data; average across traits and core sizes). In real data, particularly for larger sizes of core animals, the criteria of choice appear less important, confirming the results of earlier studies. Anyway, the inclusion in the core of animals with the lowest values of GCONTR led to increases in accuracy. These are preliminary results based on a small sample size that need to be confirmed on a larger number of genotypes.http://www.sciencedirect.com/science/article/pii/S1751731123000629Genomic selectionKey individualsPrediction accuracyPrincipal component analysisRelationship matrix
spellingShingle A. Cesarani
M. Bermann
C. Dimauro
L. Degano
D. Vicario
D. Lourenco
N.P.P. Macciotta
Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
Genomic selection
Key individuals
Prediction accuracy
Principal component analysis
Relationship matrix
title Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
title_full Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
title_fullStr Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
title_full_unstemmed Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
title_short Strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single-step genomic predictions in cattle
title_sort strategies for choosing core animals in the algorithm for proven and young and their impact on the accuracy of single step genomic predictions in cattle
topic Genomic selection
Key individuals
Prediction accuracy
Principal component analysis
Relationship matrix
url http://www.sciencedirect.com/science/article/pii/S1751731123000629
work_keys_str_mv AT acesarani strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT mbermann strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT cdimauro strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT ldegano strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT dvicario strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT dlourenco strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle
AT nppmacciotta strategiesforchoosingcoreanimalsinthealgorithmforprovenandyoungandtheirimpactontheaccuracyofsinglestepgenomicpredictionsincattle