Noncommutative Wormhole Solutions in Einstein Gauss-Bonnet Gravity
We explore static spherically symmetric wormhole solutions in the framework of n-dimensional Einstein Gauss-Bonnet gravity. Our objective is to find out wormhole solutions that satisfy energy conditions. For this purpose, we consider two frameworks such as Gaussian distributed and Lorentzian distrib...
| Published in: | Advances in High Energy Physics |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Online Access: | http://dx.doi.org/10.1155/2016/7815242 |
| Summary: | We explore static spherically symmetric wormhole solutions in the framework of n-dimensional Einstein Gauss-Bonnet gravity. Our objective is to find out wormhole solutions that satisfy energy conditions. For this purpose, we consider two frameworks such as Gaussian distributed and Lorentzian distributed noncommutative geometry. Taking into account constant redshift function, we obtain solutions in the form of shape function. The fifth and sixth dimensional solutions with positive as well as negative Gauss-Bonnet coefficient are discussed. Also, we check the equilibrium condition for the wormhole solutions with the help of generalized Tolman-Oppenheimer-Volkoff equation. It is interesting to mention here that we obtain fifth dimensional stable wormhole solutions in both distributions that satisfy the energy conditions. |
|---|---|
| ISSN: | 1687-7357 1687-7365 |
