Linewidth narrowing in self-injection locked lasers: Effects of quantum confinement

This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement....

Full description

Bibliographic Details
Published in:APL Photonics
Main Authors: Artem Prokoshin, Weng W. Chow, Bozhang Dong, Frederic Grillot, John Bowers, Yating Wan
Format: Article
Language:English
Published: AIP Publishing LLC 2024-08-01
Online Access:http://dx.doi.org/10.1063/5.0214254
Description
Summary:This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement. The theoretical approach includes (a) multimode laser interaction to treat mode competition and wave mixing, (b) quantum-optical contributions from spontaneous emission, and (c) composite laser/free-space eigenmodes to describe outcoupling and coupling among components within an extended cavity. For single-cavity lasers, such as distributed feedback lasers, the model reproduces the experimentally observed better linewidth performance of quantum-dot active regions over quantum-well ones. When applied to integrated III–V/SiN lasers, our analysis indicates Hz-level linewidth performance for both quantum-dot and quantum-well gain media due to overcoming the difference in carrier-induced refractive index by incorporating a high-Q SiN passive resonator. Trade-offs are also explored between linewidth, output power, and threshold current.
ISSN:2378-0967