Curriculum–Vacancy–Course Recommendation Model Based on Knowledge Graphs, Sentence Transformers, and Graph Neural Networks

This article addresses the task of building personalized educational recommendations based on a heterogeneous knowledge graph that integrates data from university curricula, job vacancies, and online courses. To solve the problem of course recommendations by their relevance to a user’s competencies,...

Full description

Bibliographic Details
Published in:Technologies
Main Authors: Valiya Ramazanova, Madina Sambetbayeva, Sandugash Serikbayeva, Aigerim Yerimbetova, Zhanar Lamasheva, Zhanna Sadirmekova, Gulzhamal Kalman
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/8/340
Description
Summary:This article addresses the task of building personalized educational recommendations based on a heterogeneous knowledge graph that integrates data from university curricula, job vacancies, and online courses. To solve the problem of course recommendations by their relevance to a user’s competencies, a graph neural network (GNN)-based approach is proposed, specifically utilizing and comparing the Heterogeneous Graph Transformer (HGT) architecture, Graph Sample and Aggregate network (GraphSAGE), and Heterogeneous Graph Attention Network (HAN). Experiments were conducted on a heterogeneous graph comprising various node and relation types. The models were evaluated using regression and ranking metrics. The results demonstrated the superiority of the HGT-based recommendation model as a link regression task, especially in terms of ranking metrics, confirming its suitability for generating accurate and interpretable recommendations in educational systems. The proposed approach can be useful for developing adaptive learning recommendations aligned with users’ career goals.
ISSN:2227-7080