| Summary: | Abstract Road scene parsing is a crucial capability for self-driving vehicles and intelligent road inspection systems. Recent research has increasingly focused on enhancing driving safety and comfort by improving the detection of both drivable areas and road defects. This article reviews state-of-the-art networks developed over the past decade for both general-purpose semantic segmentation and specialized road scene parsing tasks. It also includes extensive experimental comparisons of these networks across five public datasets. Additionally, we explore the key challenges and emerging trends in the field, aiming to guide researchers toward developing next-generation models for more effective and reliable road scene parsing.
|