Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits

IntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions bet...

Full description

Bibliographic Details
Published in:Frontiers in Plant Science
Main Authors: Florian Larue, Lauriane Rouan, David Pot, Jean-François Rami, Delphine Luquet, Grégory Beurier
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-07-01
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/full
_version_ 1850384407174578176
author Florian Larue
Florian Larue
Lauriane Rouan
Lauriane Rouan
David Pot
David Pot
Jean-François Rami
Jean-François Rami
Delphine Luquet
Delphine Luquet
Grégory Beurier
Grégory Beurier
author_facet Florian Larue
Florian Larue
Lauriane Rouan
Lauriane Rouan
David Pot
David Pot
Jean-François Rami
Jean-François Rami
Delphine Luquet
Delphine Luquet
Grégory Beurier
Grégory Beurier
author_sort Florian Larue
collection DOAJ
container_title Frontiers in Plant Science
description IntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects.MethodsIn this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits.ResultsThe results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used.DiscussionThese results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.
format Article
id doaj-art-25bb408665ee4e999a6af87e5c8d2aeb
institution Directory of Open Access Journals
issn 1664-462X
language English
publishDate 2024-07-01
publisher Frontiers Media S.A.
record_format Article
spelling doaj-art-25bb408665ee4e999a6af87e5c8d2aeb2025-08-19T22:56:07ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2024-07-011510.3389/fpls.2024.13939651393965Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traitsFlorian Larue0Florian Larue1Lauriane Rouan2Lauriane Rouan3David Pot4David Pot5Jean-François Rami6Jean-François Rami7Delphine Luquet8Delphine Luquet9Grégory Beurier10Grégory Beurier11Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceIntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects.MethodsIn this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits.ResultsThe results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used.DiscussionThese results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/fullconvolutional neural networkscrop growth modelgenomic predictionsorghumCGM-WGP
spellingShingle Florian Larue
Florian Larue
Lauriane Rouan
Lauriane Rouan
David Pot
David Pot
Jean-François Rami
Jean-François Rami
Delphine Luquet
Delphine Luquet
Grégory Beurier
Grégory Beurier
Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
convolutional neural networks
crop growth model
genomic prediction
sorghum
CGM-WGP
title Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
title_full Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
title_fullStr Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
title_full_unstemmed Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
title_short Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
title_sort linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
topic convolutional neural networks
crop growth model
genomic prediction
sorghum
CGM-WGP
url https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/full
work_keys_str_mv AT florianlarue linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT florianlarue linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT laurianerouan linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT laurianerouan linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT davidpot linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT davidpot linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT jeanfrancoisrami linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT jeanfrancoisrami linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT delphineluquet linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT delphineluquet linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT gregorybeurier linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits
AT gregorybeurier linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits