Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
IntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions bet...
| Published in: | Frontiers in Plant Science |
|---|---|
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-07-01
|
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/full |
| _version_ | 1850384407174578176 |
|---|---|
| author | Florian Larue Florian Larue Lauriane Rouan Lauriane Rouan David Pot David Pot Jean-François Rami Jean-François Rami Delphine Luquet Delphine Luquet Grégory Beurier Grégory Beurier |
| author_facet | Florian Larue Florian Larue Lauriane Rouan Lauriane Rouan David Pot David Pot Jean-François Rami Jean-François Rami Delphine Luquet Delphine Luquet Grégory Beurier Grégory Beurier |
| author_sort | Florian Larue |
| collection | DOAJ |
| container_title | Frontiers in Plant Science |
| description | IntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects.MethodsIn this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits.ResultsThe results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used.DiscussionThese results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances. |
| format | Article |
| id | doaj-art-25bb408665ee4e999a6af87e5c8d2aeb |
| institution | Directory of Open Access Journals |
| issn | 1664-462X |
| language | English |
| publishDate | 2024-07-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| spelling | doaj-art-25bb408665ee4e999a6af87e5c8d2aeb2025-08-19T22:56:07ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2024-07-011510.3389/fpls.2024.13939651393965Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traitsFlorian Larue0Florian Larue1Lauriane Rouan2Lauriane Rouan3David Pot4David Pot5Jean-François Rami6Jean-François Rami7Delphine Luquet8Delphine Luquet9Grégory Beurier10Grégory Beurier11Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceCentre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Montpellier, FranceUnité Mixte de Recherche, Institut Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (UMR AGAP), Université Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRA), Institut Agro, Montpellier, FranceIntroductionPredicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects.MethodsIn this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits.ResultsThe results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used.DiscussionThese results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/fullconvolutional neural networkscrop growth modelgenomic predictionsorghumCGM-WGP |
| spellingShingle | Florian Larue Florian Larue Lauriane Rouan Lauriane Rouan David Pot David Pot Jean-François Rami Jean-François Rami Delphine Luquet Delphine Luquet Grégory Beurier Grégory Beurier Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits convolutional neural networks crop growth model genomic prediction sorghum CGM-WGP |
| title | Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| title_full | Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| title_fullStr | Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| title_full_unstemmed | Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| title_short | Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| title_sort | linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits |
| topic | convolutional neural networks crop growth model genomic prediction sorghum CGM-WGP |
| url | https://www.frontiersin.org/articles/10.3389/fpls.2024.1393965/full |
| work_keys_str_mv | AT florianlarue linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT florianlarue linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT laurianerouan linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT laurianerouan linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT davidpot linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT davidpot linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT jeanfrancoisrami linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT jeanfrancoisrami linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT delphineluquet linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT delphineluquet linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT gregorybeurier linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits AT gregorybeurier linkinggeneticmarkersandcropmodelparametersusingneuralnetworkstoenhancegenomicpredictionofintegrativetraits |
