Moving target defense against adversarial attacks
Deep neural network has been successfully applied to image classification, but recent research work shows that deep neural network is vulnerable to adversarial attacks.A moving target defense method was proposed by means of dynamic switching model with a Bayes-Stackelberg game strategy, which could...
| 發表在: | 网络与信息安全学报 |
|---|---|
| Main Authors: | Bin WANG, Liang CHEN, Yaguan QIAN, Yankai GUO, Qiqi SHAO, Jiamin WANG |
| 格式: | Article |
| 語言: | 英语 |
| 出版: |
POSTS&TELECOM PRESS Co., LTD
2021-02-01
|
| 主題: | |
| 在線閱讀: | http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2021012 |
相似書籍
Adversarial attacks and defenses in deep learning
由: Ximeng LIU, et al.
出版: (2020-10-01)
由: Ximeng LIU, et al.
出版: (2020-10-01)
Adversarial attacks and defenses in deep learning
由: LIU Ximeng, et al.
出版: (2020-10-01)
由: LIU Ximeng, et al.
出版: (2020-10-01)
Survey of Image Adversarial Example Defense Techniques
由: LIU Ruiqi, LI Hu, WANG Dongxia, ZHAO Chongyang, LI Boyu
出版: (2023-12-01)
由: LIU Ruiqi, LI Hu, WANG Dongxia, ZHAO Chongyang, LI Boyu
出版: (2023-12-01)
Adversarial Attack and Defense on Deep Neural Network-Based Voice Processing Systems: An Overview
由: Xiaojiao Chen, et al.
出版: (2021-09-01)
由: Xiaojiao Chen, et al.
出版: (2021-09-01)
Hadamard’s Defense Against Adversarial Examples
由: Angello Hoyos, et al.
出版: (2021-01-01)
由: Angello Hoyos, et al.
出版: (2021-01-01)
Adversarial Sparse Teacher: Defense Against Distillation-Based Model Stealing Attacks Using Adversarial Examples
由: Eda Yilmaz, et al.
出版: (2025-01-01)
由: Eda Yilmaz, et al.
出版: (2025-01-01)
Research on structure and defense of adversarial example in deep learning
由: Guanghan DUAN, et al.
出版: (2020-04-01)
由: Guanghan DUAN, et al.
出版: (2020-04-01)
Research on structure and defense of adversarial example in deep learning
由: DUAN Guanghan, SONG Lei, et al.
出版: (2020-04-01)
由: DUAN Guanghan, SONG Lei, et al.
出版: (2020-04-01)
Adversarial Decision-Making for Moving Target Defense: A Multi-Agent Markov Game and Reinforcement Learning Approach
由: Qian Yao, et al.
出版: (2023-04-01)
由: Qian Yao, et al.
出版: (2023-04-01)
Dynamic heterogeneous scheduling method based on Stackelberg game model in container cloud
由: Wei ZENG, et al.
出版: (2021-06-01)
由: Wei ZENG, et al.
出版: (2021-06-01)
Image Classification Adversarial Example Defense Method Based on Conditional Diffusion Model
由: CHEN Zimin, GUAN Zhitao
出版: (2024-12-01)
由: CHEN Zimin, GUAN Zhitao
出版: (2024-12-01)
Markov Chain Based Efficient Defense Against Adversarial Examples in Computer Vision
由: Yue Zhou, et al.
出版: (2019-01-01)
由: Yue Zhou, et al.
出版: (2019-01-01)
Mape: defending against transferable adversarial attacks using multi-source adversarial perturbations elimination
由: Xinlei Liu, et al.
出版: (2025-01-01)
由: Xinlei Liu, et al.
出版: (2025-01-01)
Adversarial Deep Learning: A Survey on Adversarial Attacks and Defense Mechanisms on Image Classification
由: Samer Y. Khamaiseh, et al.
出版: (2022-01-01)
由: Samer Y. Khamaiseh, et al.
出版: (2022-01-01)
Besting the Black-Box: Barrier Zones for Adversarial Example Defense
由: Kaleel Mahmood, et al.
出版: (2022-01-01)
由: Kaleel Mahmood, et al.
出版: (2022-01-01)
Countering AC Load Redistribution Attacks in Smart Grids: The Role of Moving Target Defense in a Defense-Attack Game
由: Bo Liu, et al.
出版: (2024-01-01)
由: Bo Liu, et al.
出版: (2024-01-01)
Lightweight defense mechanism against adversarial attacks via adaptive pruning and robust distillation
由: Bin WANG, et al.
出版: (2022-12-01)
由: Bin WANG, et al.
出版: (2022-12-01)
Lightweight defense mechanism against adversarial attacks via adaptive pruning and robust distillation
由: Bin WANG, Simin LI, Yaguan QIAN, Jun ZHANG, Chaohao LI, Chenming ZHU, Hongfei ZHANG
出版: (2022-12-01)
由: Bin WANG, Simin LI, Yaguan QIAN, Jun ZHANG, Chaohao LI, Chenming ZHU, Hongfei ZHANG
出版: (2022-12-01)
Game Theoretic Mixed Experts for Combinational Adversarial Machine Learning
由: Kaleel Mahmood, et al.
出版: (2025-01-01)
由: Kaleel Mahmood, et al.
出版: (2025-01-01)
Finding Optimal Moving Target Defense Strategies: A Resilience Booster for Connected Cars
由: Maxime Ayrault, et al.
出版: (2022-05-01)
由: Maxime Ayrault, et al.
出版: (2022-05-01)
Developing Hessian–Free Second–Order Adversarial Examples for Adversarial Training
由: Qian Yaguan, et al.
出版: (2024-09-01)
由: Qian Yaguan, et al.
出版: (2024-09-01)
Research on adversarial attacks and defense performance of image classification models for automated driving systems
由: TANG Jun, et al.
出版: (2025-01-01)
由: TANG Jun, et al.
出版: (2025-01-01)
AMTD:a way of adaptive moving target defense
由: Danjun LIU, et al.
出版: (2018-01-01)
由: Danjun LIU, et al.
出版: (2018-01-01)
Targeted Speech Adversarial Example Generation With Generative Adversarial Network
由: Donghua Wang, et al.
出版: (2020-01-01)
由: Donghua Wang, et al.
出版: (2020-01-01)
Global Feature Attention Network: Addressing the Threat of Adversarial Attack for Aerial Image Semantic Segmentation
由: Zhen Wang, et al.
出版: (2023-02-01)
由: Zhen Wang, et al.
出版: (2023-02-01)
Improve the robustness of algorithm under adversarial environment by moving target defense
由: Kang HE, et al.
出版: (2020-08-01)
由: Kang HE, et al.
出版: (2020-08-01)
A Defense Method Against FGSM Adversarial Attack
由: WANG Xiaopeng, LUO Wei, QIN Ke, YANG Jintao, WANG Min
出版: (2021-11-01)
由: WANG Xiaopeng, LUO Wei, QIN Ke, YANG Jintao, WANG Min
出版: (2021-11-01)
Adversarial Attacks and Defenses on 3D Point Cloud Classification: A Survey
由: Hanieh Naderi, et al.
出版: (2023-01-01)
由: Hanieh Naderi, et al.
出版: (2023-01-01)
A divide-and-conquer reconstruction method for defending against adversarial example attacks
由: Xiyao Liu, et al.
出版: (2024-10-01)
由: Xiyao Liu, et al.
出版: (2024-10-01)
AdvGuard: Fortifying Deep Neural Networks Against Optimized Adversarial Example Attack
由: Hyun Kwon, et al.
出版: (2024-01-01)
由: Hyun Kwon, et al.
出版: (2024-01-01)
Maxwell’s Demon in MLP-Mixer: towards transferable adversarial attacks
由: Haoran Lyu, et al.
出版: (2024-03-01)
由: Haoran Lyu, et al.
出版: (2024-03-01)
Universal adversarial defense in remote sensing based on pre-trained denoising diffusion models
由: Weikang Yu, et al.
出版: (2024-09-01)
由: Weikang Yu, et al.
出版: (2024-09-01)
A Framework for Robust Deep Learning Models Against Adversarial Attacks Based on a Protection Layer Approach
由: Mohammed Nasser Al-Andoli, et al.
出版: (2024-01-01)
由: Mohammed Nasser Al-Andoli, et al.
出版: (2024-01-01)
Survey on adversarial attacks and defense of face forgery and detection
由: Shiyu HUANG, et al.
出版: (2023-08-01)
由: Shiyu HUANG, et al.
出版: (2023-08-01)
Survey on adversarial attacks and defense of face forgery and detection
由: Shiyu HUANG, Feng YE, Tianqiang HUANG, Wei LI, Liqing HUANG, Haifeng LUO
出版: (2023-08-01)
由: Shiyu HUANG, Feng YE, Tianqiang HUANG, Wei LI, Liqing HUANG, Haifeng LUO
出版: (2023-08-01)
Enhancing the robustness of vision transformer defense against adversarial attacks based on squeeze-and-excitation module
由: YouKang Chang, et al.
出版: (2023-01-01)
由: YouKang Chang, et al.
出版: (2023-01-01)
Survey on adversarial attacks and defenses for object detection
由: Xinxin WANG, et al.
出版: (2023-11-01)
由: Xinxin WANG, et al.
出版: (2023-11-01)
Survey on adversarial attacks and defenses for object detection
由: Xinxin WANG, et al.
出版: (2023-11-01)
由: Xinxin WANG, et al.
出版: (2023-11-01)
Optimal strategy selection approach of moving target defense based on Markov time game
由: Jinglei TAN, et al.
出版: (2020-01-01)
由: Jinglei TAN, et al.
出版: (2020-01-01)
Optimal strategy selection approach of moving target defense based on Markov time game
由: Jinglei TAN, et al.
出版: (2020-01-01)
由: Jinglei TAN, et al.
出版: (2020-01-01)
相似書籍
-
Adversarial attacks and defenses in deep learning
由: Ximeng LIU, et al.
出版: (2020-10-01) -
Adversarial attacks and defenses in deep learning
由: LIU Ximeng, et al.
出版: (2020-10-01) -
Survey of Image Adversarial Example Defense Techniques
由: LIU Ruiqi, LI Hu, WANG Dongxia, ZHAO Chongyang, LI Boyu
出版: (2023-12-01) -
Adversarial Attack and Defense on Deep Neural Network-Based Voice Processing Systems: An Overview
由: Xiaojiao Chen, et al.
出版: (2021-09-01) -
Hadamard’s Defense Against Adversarial Examples
由: Angello Hoyos, et al.
出版: (2021-01-01)
