| الملخص: | The Institute of Plasma Physics Chinese Academy of Sciences (ASIPP) is currently engaged in the design of a compact fusion device with a fusion power gain (Q) exceeding one. Due to space limitation for the device, the conductor jacket of the central solenoid (CS) magnet experiences significant electromagnetic stress. Therefore, a higher strength stainless steel known as modified N50 (CHSN01) is utilized for manufacturing the jacket. To effectively heat the plasma, the CS magnet within the device requires operation with alternating current. It is crucial to monitor fatigue crack growth caused by stress cycles in the CS jacket and assess its severity in order to ensure the safety and reliability of the fusion device. In this study, a finite element method is applied to establish a functional relationship between the stress intensity factor range ∆<i>K</i> and the jacket defect depth <i>a</i> precisely based on actual cyclic loads experienced by CS magnet operation. Experimental investigations are conducted to determine fatigue crack growth rates (FCGRs) at 4.2 Kelvin (K) for the CHSN01 jacket. The maximum likelihood estimation method is employed to calculate the probability equations of FCGRs with a random variable description. Consequently, it is possible to determine the maximum allowable initial defect size for a jacket to withstand 60,000 plasma pulses, which will serve as an input parameter for non-destructive testing of jackets.
|