Strain-Tuned Spin-Wave Interference in Micro- and Nanoscale Magnonic Interferometers
Here, we report on the experimental study of spin-wave propagation and interaction in the double-branched Mach–Zehnder interferometer (MZI) scheme. We show that the use of a piezoelectric plate (PP) with separated electrodes connected to each branch of the MZI leads to the tunable interference of th...
| Published in: | Nanomaterials |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2022-04-01
|
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-4991/12/9/1520 |
| Summary: | Here, we report on the experimental study of spin-wave propagation and interaction in the double-branched Mach–Zehnder interferometer (MZI) scheme. We show that the use of a piezoelectric plate (PP) with separated electrodes connected to each branch of the MZI leads to the tunable interference of the spin-wave signal at the output section. Using a finite element method, we carry out a physical investigation of the mechanisms of the impact of distributed deformations on the magnetic properties of YIG film. Micromagnetic simulations and finite-element modelling can explain the evolution of spin-wave interference patterns under strain induced via the application of an electric field to PP electrodes. We show how the multimode regime of spin-wave propagation is used in the interferometry scheme and how scaling to the nanometer size represents an important step towards a single-mode regime. Our findings provide a simple solution for the creation of tunable spin-wave interferometers for the magnonic logic paradigm. |
|---|---|
| ISSN: | 2079-4991 |
