Partial Exposure Attacks on a New RSA Variant

In 2022, Cotan and Teşeleanu presented a variant of the RSA cryptosystem where the modulus is of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mi&...

全面介绍

书目详细资料
发表在:Cryptography
Main Authors: Mohammed Rahmani, Abderrahmane Nitaj, Mhammed Ziane
格式: 文件
语言:英语
出版: MDPI AG 2024-10-01
主题:
在线阅读:https://www.mdpi.com/2410-387X/8/4/44
实物特征
总结:In 2022, Cotan and Teşeleanu presented a variant of the RSA cryptosystem where the modulus is of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mi>p</mi><mi>q</mi></mrow></semantics></math></inline-formula>, and the private and the public exponents satisfy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mi>d</mi><mo>≡</mo><mn>1</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mo mathvariant="normal">mod</mo><mspace width="0.277778em"></mspace><msub><mi>ψ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mo>)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ψ</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mfenced separators="" open="(" close=")"><msup><mi>p</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn></mfenced><mfenced separators="" open="(" close=")"><msup><mi>q</mi><mi>n</mi></msup><mo>−</mo><mn>1</mn></mfenced></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfrac></mrow></semantics></math></inline-formula>. This variant of RSA was recently cryptanalyzed by Nitaj, Adenan, and Ariffin at Africacrypt 2024. In this paper, we push further the cryptanalysis of the scheme of Cotan and Teşeleanu by presenting a method to solve the equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>H</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>≡</mo><mn>0</mn><mspace width="4.44443pt"></mspace><mo>(</mo><mo mathvariant="normal">mod</mo><mspace width="0.277778em"></mspace><mi>e</mi><mo>)</mo></mrow></semantics></math></inline-formula> where <i>c</i> is a constant that is independent of <i>x</i> and <i>y</i>. This enables us to propose more attacks on the scheme, including a partial key exposure attack, an attack when the most significant bits of one of the prime factors are known, and an attack when the least significant bits of one of the prime factors are known.
ISSN:2410-387X