A Fully Integrated, Power-Efficient, 0.07–2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process

This paper presents a fully integrated high-voltage (HV) neural stimulator with on-chip HV generation. It consists of a neural stimulator front-end that delivers stimulation currents up to 2.08 mA with 5 bits resolution and a switched-capacitor DC-DC converter that generates a programmable voltage s...

全面介紹

書目詳細資料
發表在:Sensors
Main Authors: David Palomeque-Mangut, Ángel Rodríguez-Vázquez, Manuel Delgado-Restituto
格式: Article
語言:英语
出版: MDPI AG 2022-08-01
主題:
在線閱讀:https://www.mdpi.com/1424-8220/22/17/6429
實物特徵
總結:This paper presents a fully integrated high-voltage (HV) neural stimulator with on-chip HV generation. It consists of a neural stimulator front-end that delivers stimulation currents up to 2.08 mA with 5 bits resolution and a switched-capacitor DC-DC converter that generates a programmable voltage supply from 4.2 V to 13.2 V with 4 bits resolution. The solution was designed and fabricated in a standard 180 nm 1.8 V/3.3 V CMOS process and occupied an active area of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.34</mn></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>. Circuit-level and block-level techniques, such as a proposed high-compliance voltage cell, have been used for implementing HV circuits in a low-voltage CMOS process. Experimental validation with an electrical model of the electrode–tissue interface showed that (1) the neural stimulator can handle voltage supplies up to 4 times higher than the technology’s nominal supply, (2) residual charge—without passive discharging phase—was below 0.12% for the whole range of stimulation currents, (3) a stimulation current of 2 mA can be delivered with a voltage drop of 0.9 V, and (4) an overall power efficiency of 48% was obtained at maximum stimulation current.
ISSN:1424-8220