Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO<sub>2</sub> Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application

Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO<sub>2</sub> nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopan...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Nanomaterials
المؤلفون الرئيسيون: Md Moniruzzaman, Yedluri Anil Kumar, Mohan Reddy Pallavolu, Hammad Mueen Arbi, Salem Alzahmi, Ihab M. Obaidat
التنسيق: مقال
اللغة:الإنجليزية
منشور في: MDPI AG 2022-09-01
الموضوعات:
الوصول للمادة أونلاين:https://www.mdpi.com/2079-4991/12/18/3187
الوصف
الملخص:Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO<sub>2</sub> nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting area for MnO<sub>2</sub>. In the meantime, the excellent retentions of the hierarchical phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO<sub>2</sub>. The unique cobalt-doped@MnO<sub>2</sub> nanocomposite electrode facilitates stable electrochemical architecture, multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO<sub>2</sub> nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of 337.8 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup>; this is greater than pristine MnO<sub>2</sub> (277.9 F g<sup>–1</sup>). The results demonstrate a worthy approach for the designing of high-performance SCs by the grouping of the nanostructured dopant material and metal oxides.
تدمد:2079-4991