DETERMINATION OF 3D WATER TURBIDITY PARAMETER FIELDS FROM LIDAR BATHYMETRY DATA BY VOLUMETRIC DATA ANALYSIS

Accurate information on turbidity in water bodies is relevant to numerous limnological and oceanological issues. However, the collection of turbidity parameters using conventional in-situ measurement methods is time-consuming and cost-intensive and therefore usually limited to very small study areas...

Full description

Bibliographic Details
Published in:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Main Authors: K. Richter, D. Mader, P. Westfeld, H.-G. Maas
Format: Article
Language:English
Published: Copernicus Publications 2022-05-01
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2022/945/2022/isprs-archives-XLIII-B2-2022-945-2022.pdf
Description
Summary:Accurate information on turbidity in water bodies is relevant to numerous limnological and oceanological issues. However, the collection of turbidity parameters using conventional in-situ measurement methods is time-consuming and cost-intensive and therefore usually limited to very small study areas. The use of airborne LiDAR bathymetry data is a promising alternative. However, existing methods for deriving turbidity parameters from airborne LiDAR bathymetry data are limited to the determination of one single turbidity parameter per water column element. The paper presents a novel approach that overcomes the existing limitations enables the determination of 3D water turbidity fields. By volumetric data analysis, the vertical turbidity stratification in the water body can be determined. For validation purposes, the approach was applied to synthetic measurement data generated in a simulation as well as a real measurement data set of a shallow coastal water.
ISSN:1682-1750
2194-9034