Development of a Custom GNSS Software Receiver Supporting Supercorrelation
Mitigating multipath interference is one of the biggest challenges in radio positioning. The Supercorrelation™ technology developed via Focal Point Positioning (FPP) suppresses multipath interference by performing long coherent integration while undergoing complex motion in order to isolate the Line...
| Published in: | Engineering Proceedings |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2023-10-01
|
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-4591/54/1/9 |
| Summary: | Mitigating multipath interference is one of the biggest challenges in radio positioning. The Supercorrelation™ technology developed via Focal Point Positioning (FPP) suppresses multipath interference by performing long coherent integration while undergoing complex motion in order to isolate the Line-Of-Sight (LOS) signals from the unwanted multipath interference. This article presents the current status of a Supercorrelating Global Navigation Satellite System (GNSS) Software-Defined Radio (SDR) and a systematic testing framework. The SDR receiver is capable of real-time processing and facilitates independent testing and demonstrations. The testing framework uses synthetic signals with a Spirent Radio-Frequency Constellation Simulator (RFCS) with Sim3D to create controlled and repeatable scenarios. The initial results demonstrate the benefits of Supercorrelator Technology (S-GNSS) for navigation resilience. |
|---|---|
| ISSN: | 2673-4591 |
