Development of a Custom GNSS Software Receiver Supporting Supercorrelation

Mitigating multipath interference is one of the biggest challenges in radio positioning. The Supercorrelation™ technology developed via Focal Point Positioning (FPP) suppresses multipath interference by performing long coherent integration while undergoing complex motion in order to isolate the Line...

Full description

Bibliographic Details
Published in:Engineering Proceedings
Main Authors: Javier Gonzalo Garcia, Johannes Rossouw van der Merwe, Paulo Esteves, Dana Jamal, Samir Benmendil, Chris Higgins, Rose Grey, Eugene Coetzee, Ramsey Faragher
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Subjects:
Online Access:https://www.mdpi.com/2673-4591/54/1/9
Description
Summary:Mitigating multipath interference is one of the biggest challenges in radio positioning. The Supercorrelation™ technology developed via Focal Point Positioning (FPP) suppresses multipath interference by performing long coherent integration while undergoing complex motion in order to isolate the Line-Of-Sight (LOS) signals from the unwanted multipath interference. This article presents the current status of a Supercorrelating Global Navigation Satellite System (GNSS) Software-Defined Radio (SDR) and a systematic testing framework. The SDR receiver is capable of real-time processing and facilitates independent testing and demonstrations. The testing framework uses synthetic signals with a Spirent Radio-Frequency Constellation Simulator (RFCS) with Sim3D to create controlled and repeatable scenarios. The initial results demonstrate the benefits of Supercorrelator Technology (S-GNSS) for navigation resilience.
ISSN:2673-4591