Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems
We investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions convergin...
| 出版年: | Electronic Journal of Qualitative Theory of Differential Equations |
|---|---|
| 主要な著者: | , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
University of Szeged
2019-04-01
|
| 主題: | |
| オンライン・アクセス: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7091 |
| _version_ | 1851849852167651328 |
|---|---|
| author | Vincenzo Ambrosio Alessio Fiscella Teresa Isernia |
| author_facet | Vincenzo Ambrosio Alessio Fiscella Teresa Isernia |
| author_sort | Vincenzo Ambrosio |
| collection | DOAJ |
| container_title | Electronic Journal of Qualitative Theory of Differential Equations |
| description | We investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero. |
| format | Article |
| id | doaj-art-4a3518801ac94a78bb618b533d2c4865 |
| institution | Directory of Open Access Journals |
| issn | 1417-3875 |
| language | English |
| publishDate | 2019-04-01 |
| publisher | University of Szeged |
| record_format | Article |
| spelling | doaj-art-4a3518801ac94a78bb618b533d2c48652025-08-19T22:24:59ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-04-0120192511310.14232/ejqtde.2019.1.257091Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problemsVincenzo Ambrosio0Alessio Fiscella1Teresa Isernia2Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona, ItalyUniversidade Estadual de Campinas, Campinas, BrazilDipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona, ItalyWe investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of infinitely many arbitrarily small solutions converging to zero.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7091fractional $p$-laplaciankirchhoff coefficienthardy potentialscritical sobolev exponentvariational methods |
| spellingShingle | Vincenzo Ambrosio Alessio Fiscella Teresa Isernia Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems fractional $p$-laplacian kirchhoff coefficient hardy potentials critical sobolev exponent variational methods |
| title | Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems |
| title_full | Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems |
| title_fullStr | Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems |
| title_full_unstemmed | Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems |
| title_short | Infinitely many solutions for fractional Kirchhoff–Sobolev–Hardy critical problems |
| title_sort | infinitely many solutions for fractional kirchhoff sobolev hardy critical problems |
| topic | fractional $p$-laplacian kirchhoff coefficient hardy potentials critical sobolev exponent variational methods |
| url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=7091 |
| work_keys_str_mv | AT vincenzoambrosio infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems AT alessiofiscella infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems AT teresaisernia infinitelymanysolutionsforfractionalkirchhoffsobolevhardycriticalproblems |
