A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation

In this paper, we totally discard the traditional trial-and-error algorithms of choosing the acceptable shape parameter <i>c</i> in the multiquadrics <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mro...

Full description

Bibliographic Details
Published in:Mathematics
Main Author: Lin-Tian Luh
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3583
Description
Summary:In this paper, we totally discard the traditional trial-and-error algorithms of choosing the acceptable shape parameter <i>c</i> in the multiquadrics <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msqrt><mrow><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>∥</mo><mi>x</mi><mo>∥</mo></mrow><mn>2</mn></msup></mrow></msqrt></mrow></semantics></math></inline-formula> when dealing with differential equations, for example, the Poisson equation, with the RBF collocation method. Instead, we choose <i>c</i> directly by the MN-curve theory and hence avoid the time-consuming steps of solving a linear system required by each trial of the <i>c</i> value in the traditional methods. The quality of the <i>c</i> value thus obtained is supported by the newly born choice theory of the shape parameter. Experiments demonstrate that the approximation error of the approximate solution to the differential equation is very close to the best approximation error among all possible choices of <i>c</i>.
ISSN:2227-7390