Error estimates of finite volume method for Stokes optimal control problem
Abstract In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L 2 $L^{2}$ -norm error estimates. The approximate orders for the state, costate, and...
| الحاوية / القاعدة: | Journal of Inequalities and Applications |
|---|---|
| المؤلفون الرئيسيون: | , , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
SpringerOpen
2021-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://doi.org/10.1186/s13660-020-02532-4 |
| الملخص: | Abstract In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L 2 $L^{2}$ -norm error estimates. The approximate orders for the state, costate, and control variables are O ( h 2 ) $O(h^{2})$ in the sense of L 2 $L^{2}$ -norm. Furthermore, we derive H 1 $H^{1}$ -norm error estimates for the state and costate variables. Finally, we give some conclusions and future works. |
|---|---|
| تدمد: | 1029-242X |
