| Summary: | Major depressive disorder (MDD) is a prevalent mental illness characterized by persistent sadness, loss of interest in activities, and significant functional impairment. It poses severe risks to individuals’ physical and psychological well-being. The development of automated diagnostic systems for MDD is essential to improve diagnostic accuracy and efficiency. Electroencephalography (EEG) has been extensively utilized in MDD diagnostic research. However, studies employing deep learning methods still face several challenges, such as difficulty in extracting effective information from EEG signals and risks of data leakage due to experimental designs. These issues result in limited generalization capabilities when models are tested on unseen individuals, thereby restricting their practical application. In this study, we propose a novel deep learning approach, termed TSF-MDD, which integrates temporal, spatial, and frequency-domain information. TSF-MDD first applies a data reconstruction scheme to obtain a four-dimensional temporal–spatial–frequency representation of EEG signals. These data are then processed by a model based on 3D-CNN and CapsNet, enabling comprehensive feature extraction across domains. Finally, a subject-independent data partitioning strategy is employed during training and testing to eliminate data leakage. The proposed approach achieves an accuracy of 92.1%, precision of 90.0%, recall of 94.9%, and F1-score of 92.4%, respectively, on the Mumtaz2016 public dataset. The results demonstrate that TSF-MDD exhibits excellent generalization performance.
|