Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains

Abstract Magnetic anisotropy is essential for many applications of ferromagnetic/ferrimagnetic materials, including permanent magnets and magnetic recording media. Attempts have been made recently to build up 3-D nanoparticle and quantum dot assemblies, however, it is not understood yet if a nanopar...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Nature Communications
المؤلفون الرئيسيون: Jeotikanta Mohapatra, Pramanand Joshi, Hur Abbas, Markus Gusenbauer, Kaifu Bian, Ping Lu, Hongyou Fan, Thomas Schrefl, J. Ping Liu
التنسيق: مقال
اللغة:الإنجليزية
منشور في: Nature Portfolio 2025-07-01
الوصول للمادة أونلاين:https://doi.org/10.1038/s41467-025-60888-x
_version_ 1849500058976780288
author Jeotikanta Mohapatra
Pramanand Joshi
Hur Abbas
Markus Gusenbauer
Kaifu Bian
Ping Lu
Hongyou Fan
Thomas Schrefl
J. Ping Liu
author_facet Jeotikanta Mohapatra
Pramanand Joshi
Hur Abbas
Markus Gusenbauer
Kaifu Bian
Ping Lu
Hongyou Fan
Thomas Schrefl
J. Ping Liu
author_sort Jeotikanta Mohapatra
collection DOAJ
container_title Nature Communications
description Abstract Magnetic anisotropy is essential for many applications of ferromagnetic/ferrimagnetic materials, including permanent magnets and magnetic recording media. Attempts have been made recently to build up 3-D nanoparticle and quantum dot assemblies, however, it is not understood yet if a nanoparticle assembly can possess high magnetic anisotropy with low anisotropic materials. In this article, we report our discovery of high magnetic anisotropy resulted from Fe3O4 nanoparticle chains. We started with closely-packed nanoparticle assemblies of spherical Fe3O4 nanoparticles that exhibit low magnetocrystalline anisotropy and shape anisotropy, and corresponding negligible coercivity. When the nanoparticle assemblies are compressed under pressure, they form bundles or arrays that consist of Fe3O4 chains with a length scale of several hundred nanometers. Magnetic measurements show that these Fe3O4 chain arrays possess a high uniaxial magnetic anisotropy (Keff ~ 2.9×105 J/m³) and significant magnetic coercivity. Our simulations reveal that interparticle magnetic dipolar interactions contribute to this type of superstructure magnetic anisotropy. This study demonstrates the feasibility and approaches to create “patterned” high magnetic anisotropy in nanoparticle superstructures/assemblies.
format Article
id doaj-art-4ffbdea5705544a0aa536622263c94de
institution Directory of Open Access Journals
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
spelling doaj-art-4ffbdea5705544a0aa536622263c94de2025-08-20T03:03:44ZengNature PortfolioNature Communications2041-17232025-07-011611910.1038/s41467-025-60888-xSuperstructure magnetic anisotropy in Fe3O4 nanoparticle chainsJeotikanta Mohapatra0Pramanand Joshi1Hur Abbas2Markus Gusenbauer3Kaifu Bian4Ping Lu5Hongyou Fan6Thomas Schrefl7J. Ping Liu8Department of Physics, University of Texas at ArlingtonDepartment of Physics, University of Texas at ArlingtonDepartment of Physics, University of Texas at ArlingtonChristian Doppler Laboratory for Magnet Design Through Physics Informed Machine LearningSandia National LaboratoriesSandia National LaboratoriesSandia National LaboratoriesChristian Doppler Laboratory for Magnet Design Through Physics Informed Machine LearningDepartment of Physics, University of Texas at ArlingtonAbstract Magnetic anisotropy is essential for many applications of ferromagnetic/ferrimagnetic materials, including permanent magnets and magnetic recording media. Attempts have been made recently to build up 3-D nanoparticle and quantum dot assemblies, however, it is not understood yet if a nanoparticle assembly can possess high magnetic anisotropy with low anisotropic materials. In this article, we report our discovery of high magnetic anisotropy resulted from Fe3O4 nanoparticle chains. We started with closely-packed nanoparticle assemblies of spherical Fe3O4 nanoparticles that exhibit low magnetocrystalline anisotropy and shape anisotropy, and corresponding negligible coercivity. When the nanoparticle assemblies are compressed under pressure, they form bundles or arrays that consist of Fe3O4 chains with a length scale of several hundred nanometers. Magnetic measurements show that these Fe3O4 chain arrays possess a high uniaxial magnetic anisotropy (Keff ~ 2.9×105 J/m³) and significant magnetic coercivity. Our simulations reveal that interparticle magnetic dipolar interactions contribute to this type of superstructure magnetic anisotropy. This study demonstrates the feasibility and approaches to create “patterned” high magnetic anisotropy in nanoparticle superstructures/assemblies.https://doi.org/10.1038/s41467-025-60888-x
spellingShingle Jeotikanta Mohapatra
Pramanand Joshi
Hur Abbas
Markus Gusenbauer
Kaifu Bian
Ping Lu
Hongyou Fan
Thomas Schrefl
J. Ping Liu
Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title_full Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title_fullStr Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title_full_unstemmed Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title_short Superstructure magnetic anisotropy in Fe3O4 nanoparticle chains
title_sort superstructure magnetic anisotropy in fe3o4 nanoparticle chains
url https://doi.org/10.1038/s41467-025-60888-x
work_keys_str_mv AT jeotikantamohapatra superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT pramanandjoshi superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT hurabbas superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT markusgusenbauer superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT kaifubian superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT pinglu superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT hongyoufan superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT thomasschrefl superstructuremagneticanisotropyinfe3o4nanoparticlechains
AT jpingliu superstructuremagneticanisotropyinfe3o4nanoparticlechains