| Summary: | This study focuses on analyzing the interactions that occur between sloshing and hydroelastic vibrations in the wall plate of a rectangular tank that contains fluid when it is subjected to rectilinear motion. Previous research has often examined the sloshing and fluid-structure interaction problem independently of each other. By contrast, this study adopts a unified approach that simultaneously addresses both phenomena through the solution of coupled equations of motion. This formulation utilizes the energy approach and the assumed modes method. The present study also derives a standard eigenvalue problem for the free vibration of the plate in conjunction with sloshing. Moreover, it explores the impact of the tank's rectilinear base movement on the coupled responses of the plate and sloshing. This approach facilitates the prediction of sloshing behavior and its influence on the elastic wall, as well as the examination of how wall vibrations affect sloshing motion. To experimentally validate the theoretical results, a rectangular tank with an elastic side wall was constructed and then partially filled with water. The obtained experimental results were consistent with the numerical predictions.
|