Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment

Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable...

Full description

Bibliographic Details
Published in:Frontiers in Neuroscience
Main Authors: Fernando García-Gutiérrez, Marta Marquié, Nathalia Muñoz, Montserrat Alegret, Amanda Cano, Itziar de Rojas, Pablo García-González, Clàudia Olivé, Raquel Puerta, Adelina Orellana, Laura Montrreal, Vanesa Pytel, Mario Ricciardi, Carla Zaldua, Peru Gabirondo, Wolfram Hinzen, Núria Lleonart, Ainhoa García-Sánchez, Lluís Tárraga, Agustín Ruiz, Mercè Boada, Sergi Valero
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-09-01
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2023.1221401/full
_version_ 1851858596961189888
author Fernando García-Gutiérrez
Marta Marquié
Marta Marquié
Nathalia Muñoz
Montserrat Alegret
Montserrat Alegret
Amanda Cano
Amanda Cano
Itziar de Rojas
Itziar de Rojas
Pablo García-González
Clàudia Olivé
Raquel Puerta
Adelina Orellana
Adelina Orellana
Laura Montrreal
Vanesa Pytel
Mario Ricciardi
Carla Zaldua
Peru Gabirondo
Wolfram Hinzen
Wolfram Hinzen
Núria Lleonart
Ainhoa García-Sánchez
Lluís Tárraga
Lluís Tárraga
Agustín Ruiz
Agustín Ruiz
Mercè Boada
Mercè Boada
Sergi Valero
Sergi Valero
author_facet Fernando García-Gutiérrez
Marta Marquié
Marta Marquié
Nathalia Muñoz
Montserrat Alegret
Montserrat Alegret
Amanda Cano
Amanda Cano
Itziar de Rojas
Itziar de Rojas
Pablo García-González
Clàudia Olivé
Raquel Puerta
Adelina Orellana
Adelina Orellana
Laura Montrreal
Vanesa Pytel
Mario Ricciardi
Carla Zaldua
Peru Gabirondo
Wolfram Hinzen
Wolfram Hinzen
Núria Lleonart
Ainhoa García-Sánchez
Lluís Tárraga
Lluís Tárraga
Agustín Ruiz
Agustín Ruiz
Mercè Boada
Mercè Boada
Sergi Valero
Sergi Valero
author_sort Fernando García-Gutiérrez
collection DOAJ
container_title Frontiers in Neuroscience
description Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of Aβ42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting Aβ42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD.
format Article
id doaj-art-517b8743c8ea475d8e8d54cfa7e5e5d7
institution Directory of Open Access Journals
issn 1662-453X
language English
publishDate 2023-09-01
publisher Frontiers Media S.A.
record_format Article
spelling doaj-art-517b8743c8ea475d8e8d54cfa7e5e5d72025-08-19T22:21:32ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2023-09-011710.3389/fnins.2023.12214011221401Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairmentFernando García-Gutiérrez0Marta Marquié1Marta Marquié2Nathalia Muñoz3Montserrat Alegret4Montserrat Alegret5Amanda Cano6Amanda Cano7Itziar de Rojas8Itziar de Rojas9Pablo García-González10Clàudia Olivé11Raquel Puerta12Adelina Orellana13Adelina Orellana14Laura Montrreal15Vanesa Pytel16Mario Ricciardi17Carla Zaldua18Peru Gabirondo19Wolfram Hinzen20Wolfram Hinzen21Núria Lleonart22Ainhoa García-Sánchez23Lluís Tárraga24Lluís Tárraga25Agustín Ruiz26Agustín Ruiz27Mercè Boada28Mercè Boada29Sergi Valero30Sergi Valero31Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAccexible Impacto s.l., Urduliz, Bizkaia, SpainAccexible Impacto s.l., Urduliz, Bizkaia, SpainDepartment of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, SpainInstitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAce Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, SpainNetworking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, SpainAlzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive functions. Currently, there are no effective treatments for AD, underscoring the importance of identifying individuals in the preclinical stages of mild cognitive impairment (MCI) to enable early interventions. Among the neuropathological events associated with the onset of the disease is the accumulation of amyloid protein in the brain, which correlates with decreased levels of Aβ42 peptide in the cerebrospinal fluid (CSF). Consequently, the development of non-invasive, low-cost, and easy-to-administer proxies for detecting Aβ42 positivity in CSF becomes particularly valuable. A promising approach to achieve this is spontaneous speech analysis, which combined with machine learning (ML) techniques, has proven highly useful in AD. In this study, we examined the relationship between amyloid status in CSF and acoustic features derived from the description of the Cookie Theft picture in MCI patients from a memory clinic. The cohort consisted of fifty-two patients with MCI (mean age 73 years, 65% female, and 57% positive amyloid status). Eighty-eight acoustic parameters were extracted from voice recordings using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and several ML models were used to classify the amyloid status. Furthermore, interpretability techniques were employed to examine the influence of input variables on the determination of amyloid-positive status. The best model, based on acoustic variables, achieved an accuracy of 75% with an area under the curve (AUC) of 0.79 in the prediction of amyloid status evaluated by bootstrapping and Leave-One-Out Cross Validation (LOOCV), outperforming conventional neuropsychological tests (AUC = 0.66). Our results showed that the automated analysis of voice recordings derived from spontaneous speech tests offers valuable insights into AD biomarkers during the preclinical stages. These findings introduce novel possibilities for the use of digital biomarkers to identify subjects at high risk of developing AD.https://www.frontiersin.org/articles/10.3389/fnins.2023.1221401/fullAlzheimer's diseasemild cognitive impairmentearly diagnosiscerebrospinal fluidbiomarkersmachine learning
spellingShingle Fernando García-Gutiérrez
Marta Marquié
Marta Marquié
Nathalia Muñoz
Montserrat Alegret
Montserrat Alegret
Amanda Cano
Amanda Cano
Itziar de Rojas
Itziar de Rojas
Pablo García-González
Clàudia Olivé
Raquel Puerta
Adelina Orellana
Adelina Orellana
Laura Montrreal
Vanesa Pytel
Mario Ricciardi
Carla Zaldua
Peru Gabirondo
Wolfram Hinzen
Wolfram Hinzen
Núria Lleonart
Ainhoa García-Sánchez
Lluís Tárraga
Lluís Tárraga
Agustín Ruiz
Agustín Ruiz
Mercè Boada
Mercè Boada
Sergi Valero
Sergi Valero
Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
Alzheimer's disease
mild cognitive impairment
early diagnosis
cerebrospinal fluid
biomarkers
machine learning
title Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_full Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_fullStr Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_full_unstemmed Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_short Harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
title_sort harnessing acoustic speech parameters to decipher amyloid status in individuals with mild cognitive impairment
topic Alzheimer's disease
mild cognitive impairment
early diagnosis
cerebrospinal fluid
biomarkers
machine learning
url https://www.frontiersin.org/articles/10.3389/fnins.2023.1221401/full
work_keys_str_mv AT fernandogarciagutierrez harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT martamarquie harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT martamarquie harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT nathaliamunoz harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT montserratalegret harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT montserratalegret harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT amandacano harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT amandacano harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT itziarderojas harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT itziarderojas harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT pablogarciagonzalez harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT claudiaolive harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT raquelpuerta harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT adelinaorellana harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT adelinaorellana harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT lauramontrreal harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT vanesapytel harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT marioricciardi harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT carlazaldua harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT perugabirondo harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT wolframhinzen harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT wolframhinzen harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT nurialleonart harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT ainhoagarciasanchez harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT lluistarraga harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT lluistarraga harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT agustinruiz harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT agustinruiz harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT merceboada harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT merceboada harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT sergivalero harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment
AT sergivalero harnessingacousticspeechparameterstodecipheramyloidstatusinindividualswithmildcognitiveimpairment