Designing giant Hall response in layered topological semimetals

Abstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Nature Communications
المؤلفون الرئيسيون: Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop
التنسيق: مقال
اللغة:الإنجليزية
منشور في: Nature Portfolio 2024-11-01
الوصول للمادة أونلاين:https://doi.org/10.1038/s41467-024-54203-3
_version_ 1849566559793577984
author Grigorii Skorupskii
Fabio Orlandi
Iñigo Robredo
Milena Jovanovic
Rinsuke Yamada
Fatmagül Katmer
Maia G. Vergniory
Pascal Manuel
Max Hirschberger
Leslie M. Schoop
author_facet Grigorii Skorupskii
Fabio Orlandi
Iñigo Robredo
Milena Jovanovic
Rinsuke Yamada
Fatmagül Katmer
Maia G. Vergniory
Pascal Manuel
Max Hirschberger
Leslie M. Schoop
author_sort Grigorii Skorupskii
collection DOAJ
container_title Nature Communications
description Abstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2 ⋅ V−1 ⋅ s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω −1 ⋅ cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films.
format Article
id doaj-art-532dff95c38e481da2b594ce6bcd1eb6
institution Directory of Open Access Journals
issn 2041-1723
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
spelling doaj-art-532dff95c38e481da2b594ce6bcd1eb62025-08-20T02:33:02ZengNature PortfolioNature Communications2041-17232024-11-0115111110.1038/s41467-024-54203-3Designing giant Hall response in layered topological semimetalsGrigorii Skorupskii0Fabio Orlandi1Iñigo Robredo2Milena Jovanovic3Rinsuke Yamada4Fatmagül Katmer5Maia G. Vergniory6Pascal Manuel7Max Hirschberger8Leslie M. Schoop9Department of Chemistry, Princeton UniversityISIS Neutron and Muon Source, STFC Rutherford Appleton LaboratoryDonostia International Physics CenterDepartment of Chemistry, Princeton UniversityDepartment of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of TokyoDepartment of Chemistry, Princeton UniversityDonostia International Physics CenterISIS Neutron and Muon Source, STFC Rutherford Appleton LaboratoryDepartment of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of TokyoDepartment of Chemistry, Princeton UniversityAbstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2 ⋅ V−1 ⋅ s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω −1 ⋅ cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films.https://doi.org/10.1038/s41467-024-54203-3
spellingShingle Grigorii Skorupskii
Fabio Orlandi
Iñigo Robredo
Milena Jovanovic
Rinsuke Yamada
Fatmagül Katmer
Maia G. Vergniory
Pascal Manuel
Max Hirschberger
Leslie M. Schoop
Designing giant Hall response in layered topological semimetals
title Designing giant Hall response in layered topological semimetals
title_full Designing giant Hall response in layered topological semimetals
title_fullStr Designing giant Hall response in layered topological semimetals
title_full_unstemmed Designing giant Hall response in layered topological semimetals
title_short Designing giant Hall response in layered topological semimetals
title_sort designing giant hall response in layered topological semimetals
url https://doi.org/10.1038/s41467-024-54203-3
work_keys_str_mv AT grigoriiskorupskii designinggianthallresponseinlayeredtopologicalsemimetals
AT fabioorlandi designinggianthallresponseinlayeredtopologicalsemimetals
AT inigorobredo designinggianthallresponseinlayeredtopologicalsemimetals
AT milenajovanovic designinggianthallresponseinlayeredtopologicalsemimetals
AT rinsukeyamada designinggianthallresponseinlayeredtopologicalsemimetals
AT fatmagulkatmer designinggianthallresponseinlayeredtopologicalsemimetals
AT maiagvergniory designinggianthallresponseinlayeredtopologicalsemimetals
AT pascalmanuel designinggianthallresponseinlayeredtopologicalsemimetals
AT maxhirschberger designinggianthallresponseinlayeredtopologicalsemimetals
AT lesliemschoop designinggianthallresponseinlayeredtopologicalsemimetals