Designing giant Hall response in layered topological semimetals
Abstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered...
| الحاوية / القاعدة: | Nature Communications |
|---|---|
| المؤلفون الرئيسيون: | , , , , , , , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Nature Portfolio
2024-11-01
|
| الوصول للمادة أونلاين: | https://doi.org/10.1038/s41467-024-54203-3 |
| _version_ | 1849566559793577984 |
|---|---|
| author | Grigorii Skorupskii Fabio Orlandi Iñigo Robredo Milena Jovanovic Rinsuke Yamada Fatmagül Katmer Maia G. Vergniory Pascal Manuel Max Hirschberger Leslie M. Schoop |
| author_facet | Grigorii Skorupskii Fabio Orlandi Iñigo Robredo Milena Jovanovic Rinsuke Yamada Fatmagül Katmer Maia G. Vergniory Pascal Manuel Max Hirschberger Leslie M. Schoop |
| author_sort | Grigorii Skorupskii |
| collection | DOAJ |
| container_title | Nature Communications |
| description | Abstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2 ⋅ V−1 ⋅ s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω −1 ⋅ cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films. |
| format | Article |
| id | doaj-art-532dff95c38e481da2b594ce6bcd1eb6 |
| institution | Directory of Open Access Journals |
| issn | 2041-1723 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| spelling | doaj-art-532dff95c38e481da2b594ce6bcd1eb62025-08-20T02:33:02ZengNature PortfolioNature Communications2041-17232024-11-0115111110.1038/s41467-024-54203-3Designing giant Hall response in layered topological semimetalsGrigorii Skorupskii0Fabio Orlandi1Iñigo Robredo2Milena Jovanovic3Rinsuke Yamada4Fatmagül Katmer5Maia G. Vergniory6Pascal Manuel7Max Hirschberger8Leslie M. Schoop9Department of Chemistry, Princeton UniversityISIS Neutron and Muon Source, STFC Rutherford Appleton LaboratoryDonostia International Physics CenterDepartment of Chemistry, Princeton UniversityDepartment of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of TokyoDepartment of Chemistry, Princeton UniversityDonostia International Physics CenterISIS Neutron and Muon Source, STFC Rutherford Appleton LaboratoryDepartment of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of TokyoDepartment of Chemistry, Princeton UniversityAbstract Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2 ⋅ V−1 ⋅ s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω −1 ⋅ cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films.https://doi.org/10.1038/s41467-024-54203-3 |
| spellingShingle | Grigorii Skorupskii Fabio Orlandi Iñigo Robredo Milena Jovanovic Rinsuke Yamada Fatmagül Katmer Maia G. Vergniory Pascal Manuel Max Hirschberger Leslie M. Schoop Designing giant Hall response in layered topological semimetals |
| title | Designing giant Hall response in layered topological semimetals |
| title_full | Designing giant Hall response in layered topological semimetals |
| title_fullStr | Designing giant Hall response in layered topological semimetals |
| title_full_unstemmed | Designing giant Hall response in layered topological semimetals |
| title_short | Designing giant Hall response in layered topological semimetals |
| title_sort | designing giant hall response in layered topological semimetals |
| url | https://doi.org/10.1038/s41467-024-54203-3 |
| work_keys_str_mv | AT grigoriiskorupskii designinggianthallresponseinlayeredtopologicalsemimetals AT fabioorlandi designinggianthallresponseinlayeredtopologicalsemimetals AT inigorobredo designinggianthallresponseinlayeredtopologicalsemimetals AT milenajovanovic designinggianthallresponseinlayeredtopologicalsemimetals AT rinsukeyamada designinggianthallresponseinlayeredtopologicalsemimetals AT fatmagulkatmer designinggianthallresponseinlayeredtopologicalsemimetals AT maiagvergniory designinggianthallresponseinlayeredtopologicalsemimetals AT pascalmanuel designinggianthallresponseinlayeredtopologicalsemimetals AT maxhirschberger designinggianthallresponseinlayeredtopologicalsemimetals AT lesliemschoop designinggianthallresponseinlayeredtopologicalsemimetals |
