Influence of pyrolysis conditions on the adsorbent properties of hazelnut shell biochar to remove paracetamol, amoxicillin, and triclosan

This study optimized the production of biochar from hazelnut shells for the adsorption of paracetamol, amoxicillin, and triclosan from water. Biochar was produced under 27 conditions (temperature: 500–900 °C, time: 0.5–2 h, particle size: 150–2000 μm). Physicochemical and instrumental analyses, as w...

Full description

Bibliographic Details
Published in:Case Studies in Chemical and Environmental Engineering
Main Authors: Paula Madariaga-Segovia, Cristina A. Villamar-Ayala, Norma Ramos, Margarita Sánchez-Domínguez, Roberto Lavín
Format: Article
Language:English
Published: Elsevier 2025-12-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666016425001586
Description
Summary:This study optimized the production of biochar from hazelnut shells for the adsorption of paracetamol, amoxicillin, and triclosan from water. Biochar was produced under 27 conditions (temperature: 500–900 °C, time: 0.5–2 h, particle size: 150–2000 μm). Physicochemical and instrumental analyses, as well as batch adsorption tests, characterized the samples. Temperature (900 °C) is the most significant factor influencing biochar properties and adsorption performance. Adsorption data fitted well with heterogeneous isotherm models, including the Sips model and multilayer/monolayer models. The maximum adsorption capacities for paracetamol, amoxicillin, and triclosan were 19.973, 2.992, and 2.678 mg/g, respectively. Biochar-based adsorption systems with water treatment applications will be scaled.
ISSN:2666-0164