Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels

In this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function &...

詳細記述

書誌詳細
出版年:Mathematics
主要な著者: Guo He, Yuying Liu
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2025-05-01
主題:
オンライン・アクセス:https://www.mdpi.com/2227-7390/13/9/1508
_version_ 1849724321658830848
author Guo He
Yuying Liu
author_facet Guo He
Yuying Liu
author_sort Guo He
collection DOAJ
container_title Mathematics
description In this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> as a linear combination of the modified Bessel function of the second kind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, subsequently transforming it into a line integral over an infinite interval on the complex plane. This transformation allows for efficient approximation using the Cauchy residue theorem and appropriate Gaussian quadrature rules. For the other integral, we achieve efficient computation by integrating special functions with Gaussian quadrature rules. Furthermore, we conduct an error analysis of the proposed methods and validate their effectiveness through numerical experiments. The proposed methods are applicable for any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and require only the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⌊</mo><mi>ν</mi><mo>⌋</mo></mrow></semantics></math></inline-formula> derivatives of <i>f</i> at 0, rendering them more efficient than existing methods that typically necessitate higher-order derivatives.
format Article
id doaj-art-5757049af01c4e4e8ee96f0678dbf4f8
institution Directory of Open Access Journals
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
spelling doaj-art-5757049af01c4e4e8ee96f0678dbf4f82025-08-20T01:49:28ZengMDPI AGMathematics2227-73902025-05-01139150810.3390/math13091508Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function KernelsGuo He0Yuying Liu1Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaDepartment of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaIn this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> as a linear combination of the modified Bessel function of the second kind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, subsequently transforming it into a line integral over an infinite interval on the complex plane. This transformation allows for efficient approximation using the Cauchy residue theorem and appropriate Gaussian quadrature rules. For the other integral, we achieve efficient computation by integrating special functions with Gaussian quadrature rules. Furthermore, we conduct an error analysis of the proposed methods and validate their effectiveness through numerical experiments. The proposed methods are applicable for any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and require only the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⌊</mo><mi>ν</mi><mo>⌋</mo></mrow></semantics></math></inline-formula> derivatives of <i>f</i> at 0, rendering them more efficient than existing methods that typically necessitate higher-order derivatives.https://www.mdpi.com/2227-7390/13/9/1508highly oscillatory integralBessel functionGaussian quadrature
spellingShingle Guo He
Yuying Liu
Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
highly oscillatory integral
Bessel function
Gaussian quadrature
title Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
title_full Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
title_fullStr Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
title_full_unstemmed Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
title_short Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
title_sort efficient numerical quadrature for highly oscillatory integrals with bessel function kernels
topic highly oscillatory integral
Bessel function
Gaussian quadrature
url https://www.mdpi.com/2227-7390/13/9/1508
work_keys_str_mv AT guohe efficientnumericalquadratureforhighlyoscillatoryintegralswithbesselfunctionkernels
AT yuyingliu efficientnumericalquadratureforhighlyoscillatoryintegralswithbesselfunctionkernels