Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels
In this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function &...
| 出版年: | Mathematics |
|---|---|
| 主要な著者: | , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
MDPI AG
2025-05-01
|
| 主題: | |
| オンライン・アクセス: | https://www.mdpi.com/2227-7390/13/9/1508 |
| _version_ | 1849724321658830848 |
|---|---|
| author | Guo He Yuying Liu |
| author_facet | Guo He Yuying Liu |
| author_sort | Guo He |
| collection | DOAJ |
| container_title | Mathematics |
| description | In this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> as a linear combination of the modified Bessel function of the second kind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, subsequently transforming it into a line integral over an infinite interval on the complex plane. This transformation allows for efficient approximation using the Cauchy residue theorem and appropriate Gaussian quadrature rules. For the other integral, we achieve efficient computation by integrating special functions with Gaussian quadrature rules. Furthermore, we conduct an error analysis of the proposed methods and validate their effectiveness through numerical experiments. The proposed methods are applicable for any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and require only the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⌊</mo><mi>ν</mi><mo>⌋</mo></mrow></semantics></math></inline-formula> derivatives of <i>f</i> at 0, rendering them more efficient than existing methods that typically necessitate higher-order derivatives. |
| format | Article |
| id | doaj-art-5757049af01c4e4e8ee96f0678dbf4f8 |
| institution | Directory of Open Access Journals |
| issn | 2227-7390 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | MDPI AG |
| record_format | Article |
| spelling | doaj-art-5757049af01c4e4e8ee96f0678dbf4f82025-08-20T01:49:28ZengMDPI AGMathematics2227-73902025-05-01139150810.3390/math13091508Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function KernelsGuo He0Yuying Liu1Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaDepartment of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou 510632, ChinaIn this paper, we investigate efficient numerical methods for highly oscillatory integrals with Bessel function kernels over finite and infinite domains. Initially, we decompose the two types of integrals into the sum of two integrals. For one of these integrals, we reformulate the Bessel function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>J</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> as a linear combination of the modified Bessel function of the second kind <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>ν</mi></msub><mrow><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, subsequently transforming it into a line integral over an infinite interval on the complex plane. This transformation allows for efficient approximation using the Cauchy residue theorem and appropriate Gaussian quadrature rules. For the other integral, we achieve efficient computation by integrating special functions with Gaussian quadrature rules. Furthermore, we conduct an error analysis of the proposed methods and validate their effectiveness through numerical experiments. The proposed methods are applicable for any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and require only the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>⌊</mo><mi>ν</mi><mo>⌋</mo></mrow></semantics></math></inline-formula> derivatives of <i>f</i> at 0, rendering them more efficient than existing methods that typically necessitate higher-order derivatives.https://www.mdpi.com/2227-7390/13/9/1508highly oscillatory integralBessel functionGaussian quadrature |
| spellingShingle | Guo He Yuying Liu Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels highly oscillatory integral Bessel function Gaussian quadrature |
| title | Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels |
| title_full | Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels |
| title_fullStr | Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels |
| title_full_unstemmed | Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels |
| title_short | Efficient Numerical Quadrature for Highly Oscillatory Integrals with Bessel Function Kernels |
| title_sort | efficient numerical quadrature for highly oscillatory integrals with bessel function kernels |
| topic | highly oscillatory integral Bessel function Gaussian quadrature |
| url | https://www.mdpi.com/2227-7390/13/9/1508 |
| work_keys_str_mv | AT guohe efficientnumericalquadratureforhighlyoscillatoryintegralswithbesselfunctionkernels AT yuyingliu efficientnumericalquadratureforhighlyoscillatoryintegralswithbesselfunctionkernels |
