Automated Mucormycosis Diagnosis from Paranasal CT Using ResNet50 and ConvNeXt Small

Purpose: Mucormycosis is a life-threatening fungal infection, where rapid diagnosis is critical. We developed a deep learning approach using paranasal computed tomography (CT) images to test whether mucormycosis can be detected automatically, potentially aiding or expediting the diagnostic process t...

Full description

Bibliographic Details
Published in:Bioengineering
Main Authors: Serdar Ferit Toprak, Serkan Dedeoğlu, Günay Kozan, Muhammed Ayral, Şermin Can, Ömer Türk, Mehmet Akdağ
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/8/854
Description
Summary:Purpose: Mucormycosis is a life-threatening fungal infection, where rapid diagnosis is critical. We developed a deep learning approach using paranasal computed tomography (CT) images to test whether mucormycosis can be detected automatically, potentially aiding or expediting the diagnostic process that traditionally relies on biopsy. Methods: In this retrospective study, 794 CT images (from patients with mucormycosis, nasal polyps, or normal findings) were analyzed. Images were resized and augmented for training. Two transfer learning models (ResNet50 and ConvNeXt Small) were fine-tuned to classify images into the three categories. We employed a 70/30 train-test split (with five-fold cross-validation) and evaluated performance using accuracy, precision, recall, F1-score, and confusion matrices. Results: The ConvNeXt Small model achieved 100% accuracy on the test set (precision/recall/F1-score = 1.00 for all classes), while ResNet50 achieved 99.16% accuracy (precision ≈0.99, recall ≈0.99). Cross-validation yielded consistent results (ConvNeXt accuracy ~99% across folds), indicating no overfitting. An ablation study confirmed the benefit of transfer learning, as training ConvNeXt from scratch led to lower accuracy (~85%) Conclusions: Our findings demonstrate that deep learning models can accurately and non-invasively detect mucormycosis from CT scans, potentially flagging suspected cases for prompt treatment. These models could serve as rapid screening tools to complement standard diagnostic methods (histopathology), although we emphasize that they are adjuncts and not replacements for biopsy. Future work should validate these models on external datasets and investigate their integration into clinical workflows for earlier intervention in mucormycosis.
ISSN:2306-5354