Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized <i>ψ</i>-Hilfer Fractional Derivatives

The regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer derivative within the sense of Caputo is an improved version of the &...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Axioms
المؤلفون الرئيسيون: Luyao Wang, Yuhang Jin, Wenchang He, Jia Mu
التنسيق: مقال
اللغة:الإنجليزية
منشور في: MDPI AG 2025-01-01
الموضوعات:
الوصول للمادة أونلاين:https://www.mdpi.com/2075-1680/14/2/79
الوصف
الملخص:The regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer derivative within the sense of Caputo is an improved version of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer fractional derivative, primarily because it addresses the issue where the initial conditions of problems involving the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer fractional derivative lack clear physical significance unless <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. This article’s main contribution is the use of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Laplace transform, which is the first to provide an explicit expression for mild solutions to the fractional diffusion equations with the regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer derivative. Additionally, we investigate the existence and attractivity of mild solutions for fractional diffusion equations involving the regularized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Hilfer fractional derivatives. Finally, we provide two examples to illustrate our main results.
تدمد:2075-1680