Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago

In this paper, the wind direction (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula>) behaviour...

Full description

Bibliographic Details
Published in:Earth
Main Authors: Thomas Plocoste, Adarsh Sankaran
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Subjects:
Online Access:https://www.mdpi.com/2673-4834/4/1/8
_version_ 1850404718489108480
author Thomas Plocoste
Adarsh Sankaran
author_facet Thomas Plocoste
Adarsh Sankaran
author_sort Thomas Plocoste
collection DOAJ
container_title Earth
description In this paper, the wind direction (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula>) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (<i>R</i>), temperature (<i>T</i>), relative humidity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>), solar radiation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula>) and wind speed (<i>U</i>)) was studied in a multi-scale way. To carry out this study, the Hilbert–Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to 2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months, the localized positive and negative correlations between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and the meteorological parameters have been identified. The alternation between these correlations was more significant for <i>T</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>. With regard to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula> and <i>U</i>, there was a dominance of a negative correlation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula>. We assumed that the micro-climate previously identified in the literature for the study area plays a key role in these behaviours. A strong positive correlation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and <i>R</i> was found from ∼7 months to ∼2.5 years. At the annual scale, the relationships between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and all meteorological parameters were long range and no significant transition in correlation was observed showing the impact of the Earth’s annual cycle on climatic variables. All these results clearly show the influence of <i>R</i>-<i>T</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula>-<i>U</i> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> over different time scales.
format Article
id doaj-art-7188f6ca9dbc4dd29a6f24efc161aacf
institution Directory of Open Access Journals
issn 2673-4834
language English
publishDate 2023-03-01
publisher MDPI AG
record_format Article
spelling doaj-art-7188f6ca9dbc4dd29a6f24efc161aacf2025-08-19T22:48:50ZengMDPI AGEarth2673-48342023-03-014115116710.3390/earth4010008Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe ArchipelagoThomas Plocoste0Adarsh Sankaran1Department of Research in Geoscience, KaruSphère SASU, Guadeloupe (F.W.I.), 97139 Abymes, FranceTKM College of Engineering Kollam, Kerala 691005, IndiaIn this paper, the wind direction (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula>) behaviour with respect to the variability of other meteorological parameters (i.e., rainfall (<i>R</i>), temperature (<i>T</i>), relative humidity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>), solar radiation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula>) and wind speed (<i>U</i>)) was studied in a multi-scale way. To carry out this study, the Hilbert–Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to 2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months, the localized positive and negative correlations between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and the meteorological parameters have been identified. The alternation between these correlations was more significant for <i>T</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>. With regard to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula> and <i>U</i>, there was a dominance of a negative correlation with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula>. We assumed that the micro-climate previously identified in the literature for the study area plays a key role in these behaviours. A strong positive correlation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and <i>R</i> was found from ∼7 months to ∼2.5 years. At the annual scale, the relationships between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> and all meteorological parameters were long range and no significant transition in correlation was observed showing the impact of the Earth’s annual cycle on climatic variables. All these results clearly show the influence of <i>R</i>-<i>T</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>h</mi></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>R</mi></mrow></semantics></math></inline-formula>-<i>U</i> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>D</mi></mrow></semantics></math></inline-formula> over different time scales.https://www.mdpi.com/2673-4834/4/1/8meteorological parametersHilbert–Huang transformMEMDTDICCaribbean area
spellingShingle Thomas Plocoste
Adarsh Sankaran
Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
meteorological parameters
Hilbert–Huang transform
MEMD
TDIC
Caribbean area
title Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
title_full Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
title_fullStr Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
title_full_unstemmed Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
title_short Multiscale Correlation Analysis between Wind Direction and Meteorological Parameters in Guadeloupe Archipelago
title_sort multiscale correlation analysis between wind direction and meteorological parameters in guadeloupe archipelago
topic meteorological parameters
Hilbert–Huang transform
MEMD
TDIC
Caribbean area
url https://www.mdpi.com/2673-4834/4/1/8
work_keys_str_mv AT thomasplocoste multiscalecorrelationanalysisbetweenwinddirectionandmeteorologicalparametersinguadeloupearchipelago
AT adarshsankaran multiscalecorrelationanalysisbetweenwinddirectionandmeteorologicalparametersinguadeloupearchipelago