Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $

This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly...

全面介紹

書目詳細資料
發表在:Electronic Research Archive
Main Authors: Dan Mao, Keli Zheng
格式: Article
語言:英语
出版: AIMS Press 2023-06-01
主題:
在線閱讀:https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTML
_version_ 1852795597795360768
author Dan Mao
Keli Zheng
author_facet Dan Mao
Keli Zheng
author_sort Dan Mao
collection DOAJ
container_title Electronic Research Archive
description This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.
format Article
id doaj-art-76423b2ddc964eb19e47570aed51f16c
institution Directory of Open Access Journals
issn 2688-1594
language English
publishDate 2023-06-01
publisher AIMS Press
record_format Article
spelling doaj-art-76423b2ddc964eb19e47570aed51f16c2025-08-19T20:42:10ZengAIMS PressElectronic Research Archive2688-15942023-06-013174266427710.3934/era.2023217Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $Dan Mao0Keli Zheng11. Department of Mathematics, School of Science, Northeast Forestry University, Harbin 150040, China 2. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China1. Department of Mathematics, School of Science, Northeast Forestry University, Harbin 150040, ChinaThis paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTMLlie superalgebramodular lie superalgebraderivation superalgebraassociative superalgebracontact type
spellingShingle Dan Mao
Keli Zheng
Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
lie superalgebra
modular lie superalgebra
derivation superalgebra
associative superalgebra
contact type
title Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
title_full Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
title_fullStr Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
title_full_unstemmed Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
title_short Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
title_sort derivations of finite dimensional modular lie superalgebras overline k n m
topic lie superalgebra
modular lie superalgebra
derivation superalgebra
associative superalgebra
contact type
url https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTML
work_keys_str_mv AT danmao derivationsoffinitedimensionalmodularliesuperalgebrasoverlineknm
AT kelizheng derivationsoffinitedimensionalmodularliesuperalgebrasoverlineknm