Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $
This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly...
| 發表在: | Electronic Research Archive |
|---|---|
| Main Authors: | , |
| 格式: | Article |
| 語言: | 英语 |
| 出版: |
AIMS Press
2023-06-01
|
| 主題: | |
| 在線閱讀: | https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTML |
| _version_ | 1852795597795360768 |
|---|---|
| author | Dan Mao Keli Zheng |
| author_facet | Dan Mao Keli Zheng |
| author_sort | Dan Mao |
| collection | DOAJ |
| container_title | Electronic Research Archive |
| description | This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $. |
| format | Article |
| id | doaj-art-76423b2ddc964eb19e47570aed51f16c |
| institution | Directory of Open Access Journals |
| issn | 2688-1594 |
| language | English |
| publishDate | 2023-06-01 |
| publisher | AIMS Press |
| record_format | Article |
| spelling | doaj-art-76423b2ddc964eb19e47570aed51f16c2025-08-19T20:42:10ZengAIMS PressElectronic Research Archive2688-15942023-06-013174266427710.3934/era.2023217Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $Dan Mao0Keli Zheng11. Department of Mathematics, School of Science, Northeast Forestry University, Harbin 150040, China 2. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China1. Department of Mathematics, School of Science, Northeast Forestry University, Harbin 150040, ChinaThis paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTMLlie superalgebramodular lie superalgebraderivation superalgebraassociative superalgebracontact type |
| spellingShingle | Dan Mao Keli Zheng Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ lie superalgebra modular lie superalgebra derivation superalgebra associative superalgebra contact type |
| title | Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ |
| title_full | Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ |
| title_fullStr | Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ |
| title_full_unstemmed | Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ |
| title_short | Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $ |
| title_sort | derivations of finite dimensional modular lie superalgebras overline k n m |
| topic | lie superalgebra modular lie superalgebra derivation superalgebra associative superalgebra contact type |
| url | https://www.aimspress.com/article/doi/10.3934/era.2023217?viewType=HTML |
| work_keys_str_mv | AT danmao derivationsoffinitedimensionalmodularliesuperalgebrasoverlineknm AT kelizheng derivationsoffinitedimensionalmodularliesuperalgebrasoverlineknm |
