Continuity of Top-of-Atmosphere, Surface, and Nadir BRDF-Adjusted Reflectance and NDVI between Landsat-8 and Landsat-9 OLI over China Landscape

The successful launch of Landsat-9 marks a significant achievement in preserving the data legacy and ensuring the continuity of Landsat’s calibrated Earth observations. This study comprehensively assesses the continuity of reflectance and the Normalized Difference Vegetation Index (NDVI) between Lan...

詳細記述

書誌詳細
出版年:Remote Sensing
主要な著者: Yuanheng Sun, Binyu Wang, Senlin Teng, Bingxin Liu, Zhaoxu Zhang, Ying Li
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-10-01
主題:
オンライン・アクセス:https://www.mdpi.com/2072-4292/15/20/4948
その他の書誌記述
要約:The successful launch of Landsat-9 marks a significant achievement in preserving the data legacy and ensuring the continuity of Landsat’s calibrated Earth observations. This study comprehensively assesses the continuity of reflectance and the Normalized Difference Vegetation Index (NDVI) between Landsat-8 and Landsat-9 Operational Land Imagers (OLIs) over diverse Chinese landscapes. It reveals that sensor discrepancies minimally impact reflectance and NDVI consistency. Although Landsat-9’s top-of-atmosphere (TOA) reflectance is slightly lower than that of Landsat-8, small root-mean-square errors (RMSEs) ranging from 0.0102 to 0.0248 for VNIR and SWIR bands (and larger RMSE for NDVI at 0.0422) fall within acceptable ranges for Earth observation applications. Applying atmospheric corrections markedly enhances reflectance uniformity and brings regression slopes closer to unity. Further, Bidirectional Reflectance Distribution Function (BRDF) adjustments improve comparability, ensuring measurement reliability, and the NDVI maintains robust consistency across various reflectance types, time series, and land cover classes. These findings affirm Landsat-9’s success in achieving data continuity within the Landsat program, allowing interchangeable use of Landsat-8 and Landsat-9 OLI data for diverse Earth observation purposes. Future research may explore specific sensor correlations across different vegetation types and seasons while integrating data from complementary platforms, such as Sentinel-2, to enhance the understanding of data continuity factors.
ISSN:2072-4292