Frequency-Agility-Based Neural Network with Variable-Length Processing for Deceptive Jamming Discrimination

With the booming development of the low-altitude economy and the widespread application of Unmanned Aerial Vehicles (UAVs), integrated sensing and communication (ISAC) technology plays an increasingly pivotal role in intelligent communication networks. However, low-altitude platforms supporting ISAC...

Full description

Bibliographic Details
Published in:Sensors
Main Authors: Wei Gong, Renting Liu, Yusheng Fu, Deyu Li, Jian Yan
Format: Article
Language:English
Published: MDPI AG 2025-09-01
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/17/5471
Description
Summary:With the booming development of the low-altitude economy and the widespread application of Unmanned Aerial Vehicles (UAVs), integrated sensing and communication (ISAC) technology plays an increasingly pivotal role in intelligent communication networks. However, low-altitude platforms supporting ISAC, such as UAV swarms, are highly vulnerable to deception jamming in complex electromagnetic environments. Existing multistatic radar systems face challenges in processing slowly fluctuating targets (like low-altitude UAVs) and adapting to complex electromagnetic environments when fusing multiple pulse echoes. To address this issue, targeting the protection needs of low-altitude targets like UAVs, this paper leverages the characteristic of rapid amplitude fluctuation in frequency-agile radar echoes to analyze the differences between true and false targets in multistatic frequency-agile radar systems, particularly for slowly fluctuating UAV targets, demonstrating the feasibility of discrimination. Building on this, we introduce a neural network approach to deeply extract discriminative features from true and false target echoes and propose a neural network-based variable-length processing method for deception jamming discrimination in multistatic frequency-agile radar. The simulation results show that the proposed method effectively exploits deep-level echo features, significantly improving the discrimination probability between true and false targets, especially for slowly fluctuating UAV targets. Crucially, even when trained on a fixed number of pulses, the model can process input data with varying pulse counts, greatly enhancing its practical deployment capability in dynamic UAV mission scenarios.
ISSN:1424-8220