Solutions for planar Kirchhoff-Schrödinger-Poisson systems with general nonlinearities

Abstract In this paper, we study the following Kirchhoff-type Schrödinger-Poisson systems in R 2 $\mathbb{R}^{2}$ : { − ( a + b ∫ R 2 | ∇ u | 2 d x ) Δ u + V ( x ) u + μ ϕ u = f ( u ) , x ∈ R 2 , Δ ϕ = u 2 , x ∈ R 2 , $$ \textstyle\begin{cases} - (a+b\int _{{\mathbb{R}}^{2}} \vert \nabla u \vert ^{2...

全面介绍

书目详细资料
发表在:Boundary Value Problems
Main Authors: Rui Niu, Hefan Wang
格式: 文件
语言:英语
出版: SpringerOpen 2023-06-01
主题:
在线阅读:https://doi.org/10.1186/s13661-023-01756-9
实物特征
总结:Abstract In this paper, we study the following Kirchhoff-type Schrödinger-Poisson systems in R 2 $\mathbb{R}^{2}$ : { − ( a + b ∫ R 2 | ∇ u | 2 d x ) Δ u + V ( x ) u + μ ϕ u = f ( u ) , x ∈ R 2 , Δ ϕ = u 2 , x ∈ R 2 , $$ \textstyle\begin{cases} - (a+b\int _{{\mathbb{R}}^{2}} \vert \nabla u \vert ^{2}\,\mathrm{d}x ) \Delta u+V(x)u+\mu \phi u=f(u),\quad x\in {\mathbb{R}}^{2}, \\ \Delta \phi =u^{2}, \quad x\in {\mathbb{R}}^{2}, \end{cases} $$ where a , b > 0 $a, b>0$ , V ∈ C ( R 2 , R ) $V\in \mathcal{C}({\mathbb{R}}^{2},{\mathbb{R}})$ and f ∈ C ( R , R ) $f\in \mathcal{C}({\mathbb{R}},{\mathbb{R}})$ . By using variational methods combined with some inequality techniques, we obtain the existence of the least energy solution, the mountain pass solution, and the ground state solutions for the above systems under some general conditions for the nonlinearities. Our results extend and improve the main results in [Chen, Shi, Tang, Discrete Contin. Dyn. Syst. 39 (2019) 5867–5889].
ISSN:1687-2770