| Summary: | Mecanum and omni wheel-based assistive technologies present an alternative to conventional mobility devices for individuals with motor impairments, owing to their omnidirectional movement capabilities and high maneuverability in constrained environments. This systematic review identifies and categorizes the key challenges and emerging trends in the development of such systems. Primary obstacles include limited stability and maneuverability on uneven terrain, high energy consumption, complex control requirements, and elevated production costs. In response, recent studies have introduced several innovative approaches, such as advanced suspension systems to enhance terrain adaptability, modular mechanical designs to reduce manufacturing complexity, energy-efficient motor control strategies such as field-oriented control, AI-driven autonomous navigation, and hands-free user interfaces—including gesture recognition and brain–computer interfaces. By synthesizing findings from 26 peer-reviewed studies, this review outlines current technical limitations, surveys state-of-the-art solutions, and offers strategic recommendations to inform future research in intelligent assistive mobility technologies.
|