PACR: Pixel Attention in Classification and Regression for Visual Object Tracking

Anchor-free-based trackers have achieved remarkable performance in single visual object tracking in recent years. Most anchor-free trackers consider the rectangular fields close to the target center as the positive sample used in the training phase, while they always use the maximum of the correspon...

Full description

Bibliographic Details
Published in:Mathematics
Main Authors: Da Li, Haoxiang Chai, Qin Wei, Yao Zhang, Yunhan Xiao
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/6/1406
Description
Summary:Anchor-free-based trackers have achieved remarkable performance in single visual object tracking in recent years. Most anchor-free trackers consider the rectangular fields close to the target center as the positive sample used in the training phase, while they always use the maximum of the corresponding map to determine the location of the target in the tracking phase. Thus, this will make the tracker inconsistent between the training and tracking phase. To solve this problem, we propose a pixel-attention module (PAM), which ensures the consistency of the training and tracking phase through a self-attention module. Moreover, we put forward a new refined branch named Acc branch to inherit the benefit of the PAM. The score of Acc branch can tune the classification and the regression of the tracking target more precisely. We conduct extensive experiments on challenging benchmarks such as VOT2020, UAV123, DTB70, OTB100, and a large-scale benchmark LaSOT. Compared with other anchor-free trackers, our tracker gains excellent performance in small-scale datasets. In UAV benchmarks such as UAV123 and DTB70, the precision of our tracker increases 4.3% and 1.8%, respectively, compared with the SOTA in anchor-free trackers.
ISSN:2227-7390