BILANGAN KROMATIK LOKASI UNTUK GALAKSI DAN HUTAN LINIER

Misalkan G = (V, E) graf terhubung dan c suatu k-pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan Ci untuk 1 ≤ i ≤ k. Misalkan Π = {C1, C2, · · · , Ck} adalah partisi terurut dari V (G) berdasarkan pewarnaan titik, maka representasi v terhadap Π di...

Full description

Bibliographic Details
Published in:Jurnal Matematika UNAND
Main Authors: Zahara Zahara, Des Welyyanti, Efendi Efendi
Format: Article
Language:English
Published: Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas 2019-02-01
Online Access:https://jmua.fmipa.unand.ac.id/index.php/jmua/article/view/398
Description
Summary:Misalkan G = (V, E) graf terhubung dan c suatu k-pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan Ci untuk 1 ≤ i ≤ k. Misalkan Π = {C1, C2, · · · , Ck} adalah partisi terurut dari V (G) berdasarkan pewarnaan titik, maka representasi v terhadap Π disebut kode warna dari v, dinotasikan dengan cΠ(v). Kode warna cΠ(v) dari suatu titik v ∈ V (G) didefinisikan sebagai vektork: cΠ(v) = (d(v, C1), d(v, C2), · · · , d(v, Ck)) dimana d(v, Ci) = min{d(v, x : x ∈ Ci)} untuk 1 ≤ i ≤ k. Jika setiap titik yang berbeda di G memiliki kode warna yang berbeda untuk suatu Π, maka c disebut pewarnaan lokasi untuk G. Jumlah warna minimum yang digunakan pada pewarnaan lokasi dari graf G disebut bilangan kromatik lokasi untuk G, dinotasikan dengan χL(G). Galaksi adalah gabungan dari graf bintang. Hutan Linier adalah gabugan dari graf lintasan. Pada tulisan ini akan dibahas bilangan kromatik lokasi untuk Galaksi dan Hutan Linier. Kata Kunci: Kelas warna, Kode warna, Bilangan kromatik lokasi, Galaksi, Hutan Linier, Graf Bintang, Graf Lintasan Diterima : 29 November 20
ISSN:2303-291X
2721-9410