The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra

In this paper, we study the approximation characteristics of weighted <i>p</i>-Wiener algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script"...

詳細記述

書誌詳細
出版年:Mathematics
主要な著者: Ying Chen, Xiangyu Pan, Yanyan Xu, Guanggui Chen
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-09-01
主題:
オンライン・アクセス:https://www.mdpi.com/2227-7390/11/18/3974
_version_ 1849893652774518784
author Ying Chen
Xiangyu Pan
Yanyan Xu
Guanggui Chen
author_facet Ying Chen
Xiangyu Pan
Yanyan Xu
Guanggui Chen
author_sort Ying Chen
collection DOAJ
container_title Mathematics
description In this paper, we study the approximation characteristics of weighted <i>p</i>-Wiener algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> defined on the <i>d</i>-dimensional torus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></semantics></math></inline-formula>. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>d</mi><mo>:</mo><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced><mo>→</mo><mi mathvariant="script">A</mi><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>d</mi><mo>:</mo><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced><mo>→</mo><msub><mi>L</mi><mi>q</mi></msub><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> is the Wiener algebra defined on the <i>d</i>-dimensional torus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></semantics></math></inline-formula>.
format Article
id doaj-art-8d6ec5fc8fa54345853fc7029f7fdebb
institution Directory of Open Access Journals
issn 2227-7390
language English
publishDate 2023-09-01
publisher MDPI AG
record_format Article
spelling doaj-art-8d6ec5fc8fa54345853fc7029f7fdebb2025-08-20T01:02:42ZengMDPI AGMathematics2227-73902023-09-011118397410.3390/math11183974The Approximation Characteristics of Weighted <i>p</i>-Wiener AlgebraYing Chen0Xiangyu Pan1Yanyan Xu2Guanggui Chen3School of Science, Xihua University, Chengdu 610039, ChinaSchool of Science, Xihua University, Chengdu 610039, ChinaSchool of Science, Xihua University, Chengdu 610039, ChinaGraduate School, Xihua University, Chengdu 610039, ChinaIn this paper, we study the approximation characteristics of weighted <i>p</i>-Wiener algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> defined on the <i>d</i>-dimensional torus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></semantics></math></inline-formula>. In particular, we investigate the asymptotic behavior of the approximation numbers, Kolmogorov numbers, and entropy numbers associated with the embeddings <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>d</mi><mo>:</mo><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced><mo>→</mo><mi mathvariant="script">A</mi><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mi>d</mi><mo>:</mo><msubsup><mi mathvariant="script">A</mi><mrow><mi>ω</mi></mrow><mi>p</mi></msubsup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced><mo>→</mo><msub><mi>L</mi><mi>q</mi></msub><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">A</mi><mfenced separators="" open="(" close=")"><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></mfenced></mrow></semantics></math></inline-formula> is the Wiener algebra defined on the <i>d</i>-dimensional torus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">T</mi><mi>d</mi></msup></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/18/3974Wiener algebraapproximation numbersKolmogorov numbersentropy numbers
spellingShingle Ying Chen
Xiangyu Pan
Yanyan Xu
Guanggui Chen
The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
Wiener algebra
approximation numbers
Kolmogorov numbers
entropy numbers
title The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
title_full The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
title_fullStr The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
title_full_unstemmed The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
title_short The Approximation Characteristics of Weighted <i>p</i>-Wiener Algebra
title_sort approximation characteristics of weighted i p i wiener algebra
topic Wiener algebra
approximation numbers
Kolmogorov numbers
entropy numbers
url https://www.mdpi.com/2227-7390/11/18/3974
work_keys_str_mv AT yingchen theapproximationcharacteristicsofweightedipiwieneralgebra
AT xiangyupan theapproximationcharacteristicsofweightedipiwieneralgebra
AT yanyanxu theapproximationcharacteristicsofweightedipiwieneralgebra
AT guangguichen theapproximationcharacteristicsofweightedipiwieneralgebra
AT yingchen approximationcharacteristicsofweightedipiwieneralgebra
AT xiangyupan approximationcharacteristicsofweightedipiwieneralgebra
AT yanyanxu approximationcharacteristicsofweightedipiwieneralgebra
AT guangguichen approximationcharacteristicsofweightedipiwieneralgebra