Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier

Weather conditions are one of the crucial factors that need attention. Changes in weather conditions significantly impact various activities. Weather condition changes are determined by numerous factors, often occurring within a relatively short period in the atmosphere, such as pressure, wind spee...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Applied Computer Science and Technology
المؤلفون الرئيسيون: Steven Joses, Donata Yulvida, Siti Rochimah
التنسيق: مقال
اللغة:الإندونيسية
منشور في: Indonesian Society of Applied Science (ISAS) 2024-06-01
الموضوعات:
الوصول للمادة أونلاين:https://journal.isas.or.id/index.php/JACOST/article/view/741
_version_ 1849419161509298176
author Steven Joses
Donata Yulvida
Siti Rochimah
author_facet Steven Joses
Donata Yulvida
Siti Rochimah
author_sort Steven Joses
collection DOAJ
container_title Journal of Applied Computer Science and Technology
description Weather conditions are one of the crucial factors that need attention. Changes in weather conditions significantly impact various activities. Weather condition changes are determined by numerous factors, often occurring within a relatively short period in the atmosphere, such as pressure, wind speed, rainfall, temperature, and other atmospheric phenomena. Issues in weather forecasting arise due to several factors, namely the fluctuating atmospheric conditions. This research proposes the development of a weather forecasting model using the ensemble learning method approach. The weather data used consist of 33746 records with attributes used after preprocessing, namely Temperature, Dew Point, Humidity, Wind Speed, Wind Gust, Pressure, Precipitation, and Condition. Testing in this research employs several single-machine learning methods such as K-Nearest Neighbor (KNN), Logistic Regression, Random Forest, Naive Bayes, and Multi-Layer Perceptron. The Naive Bayes method using default parameters achieves a high accuracy of 99.00%. In the ensemble method, combinations of three methods exhibit excellent accuracy for all combinations. The best combination methods are found in the Soft Voting Classifier method (Random Forest, MLP, Naive Bayes), Soft Voting Classifier (Logistic Regression, MLP, Naive Bayes), and Soft Voting Classifier (Random Forest, KNN, Naive Bayes) with an accuracy of 99.03%.  
format Article
id doaj-art-8eba3650b9f4482c8a67ec707f2945d7
institution Directory of Open Access Journals
issn 2723-1453
language Indonesian
publishDate 2024-06-01
publisher Indonesian Society of Applied Science (ISAS)
record_format Article
spelling doaj-art-8eba3650b9f4482c8a67ec707f2945d72025-08-20T03:45:07ZindIndonesian Society of Applied Science (ISAS)Journal of Applied Computer Science and Technology2723-14532024-06-015110.52158/jacost.v5i1.741741Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting ClassifierSteven Joses0Donata Yulvida1Siti Rochimah2Universitas Widya Dharma PontianakInstitut Teknologi Sepuluh NopemberInstitut Teknologi Sepuluh Nopember Weather conditions are one of the crucial factors that need attention. Changes in weather conditions significantly impact various activities. Weather condition changes are determined by numerous factors, often occurring within a relatively short period in the atmosphere, such as pressure, wind speed, rainfall, temperature, and other atmospheric phenomena. Issues in weather forecasting arise due to several factors, namely the fluctuating atmospheric conditions. This research proposes the development of a weather forecasting model using the ensemble learning method approach. The weather data used consist of 33746 records with attributes used after preprocessing, namely Temperature, Dew Point, Humidity, Wind Speed, Wind Gust, Pressure, Precipitation, and Condition. Testing in this research employs several single-machine learning methods such as K-Nearest Neighbor (KNN), Logistic Regression, Random Forest, Naive Bayes, and Multi-Layer Perceptron. The Naive Bayes method using default parameters achieves a high accuracy of 99.00%. In the ensemble method, combinations of three methods exhibit excellent accuracy for all combinations. The best combination methods are found in the Soft Voting Classifier method (Random Forest, MLP, Naive Bayes), Soft Voting Classifier (Logistic Regression, MLP, Naive Bayes), and Soft Voting Classifier (Random Forest, KNN, Naive Bayes) with an accuracy of 99.03%.   https://journal.isas.or.id/index.php/JACOST/article/view/741weather predictionmachine learningensemble methodsoft voting classifier
spellingShingle Steven Joses
Donata Yulvida
Siti Rochimah
Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
weather prediction
machine learning
ensemble method
soft voting classifier
title Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
title_full Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
title_fullStr Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
title_full_unstemmed Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
title_short Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
title_sort pendekatan metode ensemble learning untuk prakiraan cuaca menggunakan soft voting classifier
topic weather prediction
machine learning
ensemble method
soft voting classifier
url https://journal.isas.or.id/index.php/JACOST/article/view/741
work_keys_str_mv AT stevenjoses pendekatanmetodeensemblelearninguntukprakiraancuacamenggunakansoftvotingclassifier
AT donatayulvida pendekatanmetodeensemblelearninguntukprakiraancuacamenggunakansoftvotingclassifier
AT sitirochimah pendekatanmetodeensemblelearninguntukprakiraancuacamenggunakansoftvotingclassifier